March 31, 2010 Chief, Water Programs Enforcement Branch Water Management Program US EPA Region 4 Atlanta Federal Center 61 Forsyth Street SW Atlanta, GA 30303 Chief, Environmental Enforcement Section Environmental and Natural Resources Division U.S. Department of Justice Post Office Box 7611 Washington DC 20044-7611 Jeff Cummins, Acting Director Division of Enforcement Department of Environmental Protection 300 Fair Oaks Lane Frankfort, KY 40601 Subject: Jeffersontown Water Quality Treatment Center Blending Elimination Plan Civil Action No. 3:08-cv-00608-CRS #### Attention Chiefs and Director: The Louisville and Jefferson County Metropolitan Sewer District (MSD) has developed this plan to eliminate the practice of "blending" at the Jeffersontown Water Quality Treatment Center (WQTC), in accordance with Paragraph 26 (c) of the Amended Consent Decree filed with the Federal Court on March 9, 2009. #### BACKGROUND Located in eastern Jefferson County, the Jeffersontown WQTC was formerly named the Jeffersontown Wastewater Treatment Plant (WWTP) which is how it is referred to in the Amended Consent Decree. The WQTC is currently rated at 4.0 million gallons per day (MGD) annual average flow. During wet weather events flows to the WQTC can approach 20 MGD, which exceeds both the hydraulic and treatment capacity of the existing secondary treatment process units. To prevent the discharge of untreated wastewater from the headworks of the facility, MSD currently provides partial treatment (screening, grit removal, primary sedimentation) to a portion of the wet weather flows, and then "blends" this partially treated flow with effluent from the secondary treatment process. The blended flow is then disinfected by ultra-violet light and discharged to Chenoweth Run. #### Requirements of the Amended Consent Decree While the practice of blending reduces pollutant discharges during wet weather flows, regulatory agencies have determined that the routing of flows around the secondary treatment system does not meet the intent of the regulations enforcing the Clean Water Act. To address this, the Amended Consent Decree Paragraph 26 (c) requires: Jeffersontown WQTC Blending Elimination Plan Page 2 of 9 "...appropriate alternatives for both the complete elimination of the Jeffersontown WWTP and long term upgrades to the Jeffersontown WWTP should elimination not be practical or achievable." "... expeditious implementation and completion schedules not extending past December 31, 2015..." and, "No later than March 31, 2010, MSD must select and commit to perform pursuant to this Amended Consent Decree one of the alternatives for either the elimination or long term upgrade of the Jeffersontown WWTP...and inform Cabinet/EPA of its selection." The purpose of this report is to document the process used to select the approach for eliminating blending at the WQTC, and to describe the approach and the schedule for implementing. #### Comprehensive Performance Evaluation and IOAP The Comprehensive Performance Evaluation (CPE) performed for the Jeffersontown WQTC in 2009 evaluated a number of plant upgrade alternatives to eliminate blending. The Integrated Overflow Abatement Plan (IOAP) incorporated the preferred plant upgrade alternative into an overall evaluation that also considered eliminating the Jeffersontown WQTC and diverting flows to other locations for treatment and discharge. The IOAP found that complete elimination of the WQTC was both practical and achievable, and recommended an approach that pumps flow to the Hikes Lane Interceptor. Dry weather flow is then routed to the Morris Forman WQTC, and wet weather flow can be routed to the Derek R. Guthrie WQTC. When this plan was presented to the public during review of the final draft IOAP, strong reaction was received from residents of southwest Jefferson County, suggesting that MSD re-consider sending all wet weather flows to the Derek R. Guthrie WQTC. MSD agreed to investigate refinements to the blending elimination plan and review the final recommendation prior to committing to an approach as required by the Amended Consent Decree. #### EVALUATION OF ALTERNATIVES The evaluation process used to select the final approach to eliminate blending at the Jeffersontown WQTC is documented in the following text. #### **Decision Process** During development of the IOAP, MSD developed a decision model based on a risk-management approach to protecting key community values as identified by the Wet Weather Team Stakeholder Group. This decision model was used to evaluate, select, and prioritize the projects required to mitigate sewer overflows. This decision model was well received by stakeholders, regulators, and the general public. It was determined that a similar process would be used to select the final blending elimination approach as well. Jeffersontown WQTC Blending Elimination Plan Page 3 of 9 The decision model used in the Jeffersontown WQTC blending elimination evaluation uses the same set of values as the IOAP. Most of the performance measure evaluation scales and scoring criteria were also retained, with a few exceptions that recognize the differences in the decision required in the blending elimination evaluation. For example, in the Eco-Friendly Solutions value, the IOAP performance measures include a factor that assigns benefit points for alternatives that reduce overall pollutant loadings in the watershed. To better differentiate between blending elimination alternatives, this performance measure was modified to assign benefit points based on how much of the effluent load was diverted to the Ohio River, as compared to diversion to other discharge points still within the overall Floyd's Fork watershed of which Chenoweth Run is a part. As a result of these changes, the benefit scores calculated in this evaluation cannot be used to compare projects described in this report with projects described in the IOAP. The benefit scores used in this report can only be used to compare the alternatives described herein. Similarly, the project costs for the IOAP were developed using a standardized cost model useful for planning-level estimating. Projects in this report used the IOAP cost model where appropriate, but some components such as pipe lining could be more accurately estimated using unit prices from recent MSD bids. As a result, the costs shown herein cannot be directly compared to costs in the IOAP, and are referred to as "comparative" to clarify their intended use for alternative evaluation. #### **Public Input on Blending Elimination Alternatives** After development and evaluation of the alternatives, MSD conducted "open house" public meetings in both the Jeffersontown area and in the Valley Station area in southwest Jefferson County. While the meetings did not generate the same level of interest as the previous meetings, residents and other interested parties were able to express ongoing concerns and suggest refinements to the plans presented. Representatives of the Floyds Fork Future Fund Land Trust (Future Fund) expressed concern about the planned relocation of the proposed "Billtown Road Pump Station" approximately4000 feet south to a more accessible site at Seatonville Road. Figure 1 shows the location of the Billtown Road Pump Station and the boundaries of the proposed service area as defined in the 2000 Cedar Creek Action Plan Update (CCAPU), the currently approved Facilities Plan for the area. Since Future Fund is a non-profit organization formed to purchase land and conservation easements for parks and green space, they are concerned that the relocation of the pump station and the associated expansion of the Cedar Creek WQTC service area could negatively impact their ability to acquire land and easements in the area. While the blending elimination plan may rely on downstream infrastructure provided under the CCAPU, the exact location of the pump station does not impact the blending elimination decision. An update to the Action Plan is currently being prepared that will address potential service area modifications, and providing sewer service to additional properties and potential customers in the watershed. The review process for this Action Plan is the established forum to discuss service area boundaries and pump station locations in the Cedar Creek WQTC basin. Property owners who live immediately south of the Jeffersontown WQTC along the route of the current Chenoweth Run Force Main noted that Alternative 3 (the lowest cost alternative) showed the elimination of the Jeffersontown WQTC being achieved by a pump station at the current WOTC site Jeffersontown WQTC Blending Elimination Plan Page 4 of 9 with a force main pumping south along the same route as the Chenoweth Run Force Main to a connection point with the Cedar Creek WQTC collection system. They questioned if a gravity sewer could be used instead, thereby allowing sewer service to be provided to property south of the WQTC currently served only by septic tanks. A preliminary evaluation of the gravity sewer option showed higher construction costs for the gravity sewer design based on the assumption that the existing force main could be reused for the pumped option. Further evaluation showed that the force main would need to be replaced if the pumped option was selected, resulting in essentially equal construction costs for the pumped and gravity options. The gravity option will have lower total present worth costs when operation and maintenance costs are considered. As a result of this evaluation and the public input received at the open house, the connection between the Jeffersontown WQTC site and the Cedar Creek WQTC collection system has been changed to a gravity sewer in the alternatives presented herein. #### BLENDING ELIMINATION ALTERNATIVES Three additional alternative approaches were developed to be compared to the elimination approach presented in the IOAP. The following is a summary of the IOAP solution and the
three additional alternatives that were evaluated. ### **IOAP Approach** The approach presented in the IOAP is illustrated in Figures 2 and 3. Figure 2 summarizes the amount of dry weather flow diverted to the Floyds Fork WQTC and the Morris Forman WQTC. Dry weather flow is used to illustrate the approximate split of flow diversions. Wet weather flow is assumed to be split in approximately the same proportions. As Figure 2 shows, except for a small portion of flow diverted to the Floyds Fork WQTC (an approach common to all Alternatives), all flow is pumped from the existing Jeffersontown WQTC site up to the Hikes Lane Interceptor. Figure 3 shows the preliminary pipe routing used for cost estimating. Table 1 presents the major cost elements and the comparative cost estimate for this approach. | Table 1 - Original IOAP Approach Flows Diverted to Hikes Lane Interceptor | | | | | | | | | | |---|---|-----|---------------|--|--|--|--|--|--| | Main Projects | Description | Com | parative Cost | | | | | | | | J-Town to HLI Improvements (replace interceptor from Grassland area to WQTC, Storage and PS at the WQTC, force main to HLI) | Range of 15"-42"
Interceptor Upsize;
5.7 MG Storage;
10 MGD PS;
24" FM to HLI | \$ | 23,737,000 | | | | | | | | Chenoweth Run PS Improvements | 2.7 MGD PS;
Upsize FM to 12" | \$ | 2,207,000 | | | | | | | | Total: | | \$ | 25,944,000 | | | | | | | Jeffersontown WQTC Blending Elimination Plan Page 5 of 9 #### Alternative 1 Alternative 1 differs from the IOAP approach in that a portion of the service area south of the WQTC is diverted to the Cedar Creek WQTC. Figure 4 shows the proportion of flow diverted, and Figure 5 shows the preliminary pipe routing. Note that this alternative is consistent with the concepts contained in the CCAPU as shown in Figure 1. For the purpose of alternative comparison, costs for blending elimination are calculated based on what is specifically needed for Jeffersontown WQTC elimination, or the upsizing required to accommodate WQCT elimination in facilities planned for other purposes (such as serving areas not currently sewered). Costs for facilities such as the Billtown Road Pump Station are not included in the evaluation, except to the extent that they must be enlarged to accommodate the Jeffersontown WQTC flows (as compared to the Hikes Lane Interceptor diversion approach presented in the IOAP). Table 2 presents the major cost elements and the comparative cost estimate for this approach. | Table 2 - Alternative 1 Costs | |--| | 80% Diverted to Hikes Lane Interceptor | | 20% Diverted to Cedar Creek WQTC | | Main Projects | Description | Comparative Cost | | | |--|--|------------------|------------|--| | J-Town to HLI Improvements (replace interceptor from Grassland to WQTC, Storage and PS at the WQTC, FM to HLI) | Interceptor Upsize: 2,613 LF ~ 42";
1,525 LF ~ 36"; 1,370 LF ~ 24";
700 LF ~ 15"; 2.3 MG Storage; 10
MGD PS; 32,100 LF ~ 24" FM to
HLI | \$ | 20,596,000 | | | Upsize Billtown Road Interceptor | 4,511 LF ~ 30"; 7,093 LF ~ 24"
Chenoweth Run PS Elimination | \$ | 1,304,000 | | | Upsize Billtown Road PS & FM | 15 MGD PS; 5,814 LF ~ 30" FM | \$ | 1,811,000 | | | Upsize Fairmount Road PS
Improvements | 21.7 MGD PS; 9,935 LF ~ 36" FM | \$ | 1,526,000 | | | Total: | | \$ | 25,237,000 | | Jeffersontown WQTC Blending Elimination Plan Page 6 of 9 #### Alternative 2 Alternative 2 is the only alternative under consideration that keeps the Jeffersontown WQTC in operation (at reduced flows). As shown in Figure 6, the northwest part of the service area is pumped to the Hikes Lane Interceptor from a new pump station site assumed to be located on or near the existing Sanitary Sewer Overflow at Grassland Avenue. The south area is routed to the Cedar Creek WQTC similar to Alternative 1. Approximately 0.8 MGD of dry weather flow continues to be treated and discharged from the current Jeffersontown WQTC, which would require substantial rehabilitation to assure reliable service into the future. Figure 7 shows the preliminary pipe line routing and pump station locations. Table 3 presents the major cost elements and the comparative cost estimate for this approach. # Table 3 - Alternative 2 Costs 55% Diverted to Hikes Lane Interceptor 20% Diverted to Cedar Creek WQTC 25% Continues Treatment at Existing WQTC | Main Projects | Description | Comparative Cost | | | |---|---|------------------|------------|--| | J-Town to HLI Improvements
(replace interceptor from
Grassland to WWTP, Storage and
PS at the WWTP, FM to HLI) | Interceptor Upsize:
680 LF ~ 24"; 700 LF ~ 15"
0.54 MG Storage; 10 MGD PS;
25,820 LF ~ 24" FM to HLI | \$ | 13,460,000 | | | Jeffersontown WTP Improvements | Equipment Repairs Needed if
Plant is kept in Place (This cost
needs to be corrected by CH2) | \$ | 3,000,000 | | | Pipe Cured In Place Pipe Lining | 2,638 LF ~ 36"; 2,836 LF ~ 30";
172 LF ~24"; 735 LF ~ 18" | \$ | 2,675,000 | | | Upsize Billtown Road Interceptor | 4,511 LF ~ 30"; 7,093 LF ~ 24"
Chenoweth Run PS Elimination | \$ | 1,304,000 | | | Upsize Billtown Road PS & FM | 15 MGD PS; 5,814 LF ~ 30" FM | \$ | 1,811,000 | | | Upsize Fairmount Road PS
Improvements | 21.7 MGD PS; 9,935 LF ~ 36" FM | \$ | 1,526,000 | | | Total: | | \$ | 23,766,000 | | Jeffersontown WQTC Blending Elimination Plan Page 7 of 9 #### Alternative 3 Alternative 3 is illustrated in Figures 8 and 9. This alternative diverts the northwest area to the Hikes Lane interceptor similar to Alternative 2. In this alternative all remaining flows (except those diverted to Floyds Fork WQTC) are diverted to the Cedar Creek WQTC. The pump station site is anticipated to be located on or near the existing Jeffersontown Municipal Services storage yard. It is expected that a connection will be retained between the pump station diverting flow to the Hikes Lane Interceptor and the interceptor carrying flow south to the Cedar Creek WQTC. This connection will allow MSD more flexibility in flow routing, and allows the option of sending all from this watershed to a new regional treatment facility on the Salt River, should that become available in the future. Table 4 presents the major cost elements and the comparative cost estimate for this approach. ## Table 4 - Alternative 3 Costs 60% Diverted to Hikes Lane Interceptor 40% Diverted to Cedar Creek WQTC | Main Projects | Description | Comparative Cost | | | |--|---|------------------|------------|--| | J-Town to HLI Improvements (replace interceptor from Grassland to WQTC, Storage and PS at the WQTC, FM to HLI) | Interceptor Upsize:
1,370 LF ~ 24"; 700 LF ~ 15";
0.8 MG Storage; 10 MGD PS;
28,110 LF ~ 24" FM to HLI | \$ | 15,014,000 | | | Pipe Cured In Place Pipe Lining | 2,638 LF ~ 24";
172 LF ~ 18" | \$ | 268,000 | | | Upper Billtown Rd Interceptor | 8,030 LF ~ 24" Interceptor from
Jtown WQTC to Chenoweth Run PS | \$ | 1,047,000 | | | Upsize Billtown Road Interceptor | 9,179 LF ~ 30"; 2,426 LF ~ 24"
Chenoweth Run PS Elimination | \$ | 1,505,000 | | | Upsize Billtown Road PS & FM | 19.5 MGD PS; 5,814 LF ~ 36" FM | \$ | 3,194,000 | | | Upsize Fairmount Road PS
Improvements | 25.9 MGD PS; 9,935 LF 36" FM | \$ | 2,227,000 | | | Total: | | \$ | 23,255,000 | | Jeffersontown WQTC Blending Elimination Plan Page 8 of 9 #### ALTERNATIVE EVALUATION Table 5 summarizes the benefit scores, comparative costs, and benefit/cost ratios for the IOAP approach and the three alternatives. Detailed benefit scoring sheets are attached at the end of this report, following the figures. | Table 5 - Cost and Benefit Summary | | | | | | | | | | | | | |------------------------------------|------------------|---------------|---------------|---------------|--|--|--|--|--|--|--|--| | | Original
IOAP | Alternative 1 | Alternative 2 | Alternative 3 | | | | | | | | | | Comparative
Cost | \$ 25,944,000 | \$ 25,237,000 | \$ 23,776,000 | \$ 23,255,000 | | | | | | | | | | Benefit Score | 3,636 | 3,636 | 2,826 | 3,564 | | | | | | | | | | Benefit/Cost
Ratio (x100,000) | 14.01 | 14.41 | 11.89 | 15.33 | | | | | | | | | As Table 5 shows, Alternative 3 has the lowest comparative construction cost, and also has the best benefit/cost ratio. This Alternative has an additional benefit not quantified by the benefit/cost evaluation. Since it retains connectivity between the northwest diversion and the southern diversion, it has the potential to make maximum use of a future regional treatment facility on the Salt River should that become available in the future. At the time this report was prepared, a bill (HB 221) was being considered by the Kentucky legislature that would allow the creation of a regional sewer district to serve the Salt River watershed. If this regional sewer district is formed in the future, MSD would retain the option to include all its Salt River basin facilities within the service area of this new entity. #### SELECTED BLENDING ELIMINATION APPROACH Alternative 3 is the approach selected by MSD to eliminate
blending at the Jeffersontown WQTC. It eliminates the WQTC in its entirety, which is clearly the preferred approach stated in the Amended Consent Decree. It is consistent with concepts in the Cedar Creek Action Plan Update, and will be included in the Floyds Fork Watershed Plan Update currently being prepared to update the facilities plans for all WQTCs in the Floyds Fork watershed. #### **Phasing Plan** Completion of the elimination plan requires coordination with enabling projects in the Cedar Creek WQTC service area. Figure 10 presents the general phasing plan for all the projects required to implement the selected plan. #### Schedule Figure 11 presents the proposed schedule for all the components of the elimination plan. Critical schedule elements include the design and construction of the force main from the new pump station Jeffersontown WQTC Blending Elimination Plan Page 9 of 9 assumed to be located at or near the existing Jeffersontown Municipal Services storage yard and the east end of the Hikes Lane Interceptor. The biggest unknowns in this project are issues surrounding land and easement acquisition and permitting of stream crossings etc. MSD plans to complete the components of this plan by the December 31, 2015, requirement for blending elimination, and will be able to complete the elimination in advance of the required date if the force main construction can be completed early. I certify under penalty of law that this document and all attachments were prepared under our direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering such information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. If you have questions or need additional information, please contact me at (502) 649-3850. Sincerely, W. Brian Bingham Regulatory Services Director W. Bin B. Attachments cc: H. J. Schardein, Jr. Paula Purifoy Laurence J. Zielke Figure 1 - Cedar Creek Action Plan Update Flow Diversions MORRIS FORMAN TAYLORSVILLE RD FLOYD'S FORK HIGHGATE DWF: 0.21 MGD FLOYD'S TUCKER SPRINGS PS FORK WTP STATION PS **JEFFERSONTOWN** DWF: 3.37 MGD JEFFERSONTOWN WTP (DECOMMISSION) TAYLORS WILLE RD LAKELET **Summary Features** WAY PS East Area Diverted to FFWQTC Legend Dry Weather Flow to MFWQTC Treatment Plant Inservice CHENOWETH Storm Flow to DRGWQTC WEST COUNTY Documented SSO VALLEY RUN PS ▲ Pump Station Inservice PARK PS → 0.00 - 8.00 Forcemain MSD J-town Project Cost → 8.01 - 24.00 Forcemain - 24.01 - 54.00 Forcemain \$25,944,000 0.00 - 8.00 **MSD 8.01 - 24.00 24.01 - 54.00** Benefits Streams ~Maximize Use of Dry Weather Capacity at MFWQTC - Major Roads JEFFERSONTOWN CEDAR CREEK ~J-town Plant Elimination FLOYDS FORK HITE CREEK ~95% Pollutant Load Transferred CEDAR CREEK MORRIS FORMAN to Ohio River WEST COUNTY X:\AA_Projects 2007/07089 JTown_SSS_ModelingPhill\GAP_Feb2010Revisions\GIS\Ortiginal Solution IOAP_rev Figure 2 - Jeffersontown Diversion Projects: Original IOAP - J-Town to HLI Figure 3 - Jefferson Diversion Projects: Original IOAP - Jeffersontown to HLI Hill Ridge WTP Chenoweth Hills WTP Legend ▲ Pump Station Inservice Treatment Plant Inservice **Proposed Sewers** Force Main Gravity Hikes Lane Interceptor Other IOAP Projects → 0.00 - 8.00 Forcemain → 8.01 - 24.00 Forcemain - 24.01 - 200.00 Forcemain 0.00 - 8.00 Sewer MSD 8.01 - 24.00 Sewer → 24.01 - 200.00 Sewer County Line Figure 4 - Jeffersontown Diversion Projects: Alternate 1 - Gravity to HLI / Pumped to Cedar Creek Figure 6 - Jeffersontown Diversion Projects: Alternate 2 - Grassland to HLI / Gravity and Pumped to Cedar Creek Figure 7 - Jeffersontown Diversion Projects: Alternate 2 - Grassland PS to HLI & Gravity and Pumped to Cedar Creek Proposed PS to HLI Proposed Hikes Lane Interceptor Lakelet Way P5 Lake of the Woods WTP Legend A Pump Station Inservice Treatment Plant Inservice △ Proposed PS Proposed Sewers Interceptor Other IOAP Projects Solutions_Preferred_Slip_Lining Hikes Lane Interceptor → 0.00 - 8.00 Forcemain → 8.01 - 24.00 Forcemain 24.01 - 200.00 Forcemain 0.00 - 8.00 Sewer MSD 8.01 - 24.00 Sewer > 24.01 - 200.00 Sewer Fairmount Road PS Major Roads Figure 8 - Jeffersontown Diversion Projects: Alternate 3 - Public Works to HLI / Gravity and Pumped to Cedar Creek Figure 9 - Jeffersontown Diversion Projects: Alternate 3 - Public Works PS to HLI & Gravity and Pumped to Cedar Creek Proposed PS to HLI Legend ▲ Pump Station Inservice Treatment Plant Inservice Proposed Sewers Force Main Hikes Lane Interceptor Solutions_Preferred_Slip_Lining Other IOAP Projects Existing Sewers - 0.00 - 8.00 Forcemain 8.01 - 24.00 Forcemain 24.01 - 200.00 Forcemain 0.00 - 8.00 Sewer MSD Fairmount Rd PS → 8.01 - 24.00 Sewer → 24.01 - 200.00 Sewer County Line #### FIGURE 11-SCHEDULE # Attachment Benefit Scoring Sheets # (References LOC_JT_JT_NB01_Q_Q.xls and LOC_JT_JT_NB01A.xls) # **Cluster Comparison** Project #1: S_JT_JT_NB01_01_C_A (Original IOAP) ## Raw Benefit Score² | CSO/SSO ID | | Regulatory
Performance | Public Health | Asset
Protection | Environmental
Enhance | Eco-Friendly Solutions | |---|----------|---------------------------|---------------|---------------------|--------------------------|------------------------| | ISO28 | | 21 | 22 | 10 | 11 | 3 | | 28390 | | 5 | 7 | 10 | 11 | 3 | | 31733 | | 21 | 20 | 10 | 11 | 3 | | 28395A | | 5 | 3 | 10 | 11 | 3 | | 64505 | | 5 | 3 | 10 | 11 | 3 | | MSD0255 | | 0 | 0 | 10 | 11 | 3 | | 28392 | | 0 | 0 | 10 | 11 | 3 | | 28391 | | 0 | 0 | 10 | 11 | 3 | | 28173 | | 0 | 0 | 10 | 11 | 3 | | 64096 | | 21 | 8 | 5 | 4 | -4 | | 86052 | | 21 | 22 | 5 | 4 | -4 | | 92061 | | 0 | 0 | 5 | 4 | -4 | | MSD0263 | | 21 | 18 | 5 | 4 | -4 | | Weighting Factor | | 8 | 10 | 6 | 8 | 6 | | Weighted Benefit Score | | 960 | 1030 | 660 | 920 | 66 | | Total Benefit Score | 3636 | | | | | | | Total Capital Cost ³ | 27595000 | | | | | | | Total Present Worth Costs ³ | 2,000000 | | | | | | | Weighted Benefit/Cost Ratio (Capital Costs) | 13.1763 | | | | | | | Weighted Benefit/Cost Ratio (Total Present Worth Costs) | #DIV/0! | | | | | | #### Notes: - 1. Data Input Cells are highlighted in yellow - 2. Raw Benefit Scores for Regulatory Performance and Public Health values are from the CSO or SSO Level of Control Benefit Sheets - 3. Capital and Total Present Worth Costs from the "Proj Summary" Page of the Cost Model for the clustered alternative JT_NB01_BCA_Q_Q.xls) | 2-Year | Jeffersontown Blending Elimin | ation Plan - Original IOAP, A | Alternatives 1, 2, 3 (all the same) | |-------------------|-------------------------------|-------------------------------|-------------------------------------| | Value: Regulatory | Performance - SS0s | | | | Measure | Impact / Frequency | Rationale | Measurement Method | | | Measure | | In | npact | / Freq | uency | | Rationale | Meas | urement Met | hod | |-------------------------|--------------------|--------------|------------|--------|--------|---------|---|--|--|-------------|-------------| | Performanc
e Measure | SSOs | 6 month | 1 Year | 2 Year | 5 Year | 10 Year | Modeled
Overflow
Point or No
discharge | Regulations do not distinguish between potential impact of SSOs, therefore frequency and impact are the same for Regulatory Performance value Modeled Overflow Points are not considered until verified. | Measurement method quantify the SSO disc | | c models to | | | Value | 25 | 12 | 0 | 4 | 1 | 0 | | | | | | | ISO28 | BL | | | PR | | - FeV | | 25 | 4 | 21 | | | 28390 | | | BL | PR | | | | 9 | 4 | 5 | | > | 31733 | BL | | | PR | | | | 25 | 4 | 21 | | enc | 28395A | | | BL | PR | | | | 9 | 4 | 5 | | Frequency | 64505 | | | BL | PR | | | | 9 | 4 | 5 | | T. | MSD0255 | | | | | | BL | | 0 | 0 | 0 | | | 28392 | | | | | | BL | | 0 | 0 | | | | 28391 | | | | | | BL | | 0 | 0 | | | | 28173 | | | | | | BL | | 0 | 0 | | | ote - This v | alue sheet calcula | tes the tota | l benefit. | | | | | | F | | | | | Measure | | In | npact | / Freq | uency | | Rationale | Meas | urement Met | hod | |-------------------------|---------|----|----|--------|---------|---|--|--|------|-------------|-----| | Performanc
e Measure | SSOs | | | 5 Year | 10 Year | Modeled
Overflow
Point or No
discharge | Regulations do not distinguish between potential impact of SSOs, therefore frequency and impact are the same for Regulatory Performance value Modeled Overflow Points are not considered until verified. | Measurement methods will be via hydraulic models | | | | | | Value | 25 | 16 | 9 | 4 | 1 | 0 | 1. 2 | | | | | ıcy | 64096 | BL | | | PR | | | | 25 | 4 | 21 | | Frequency | 86052 | BL | | | PR | | | | 25 | 4 | 21 | | rec | 92061 | | | | | | BL | 54 45- | 0 | 0 | 0 | | ш | MSD0263 | BL | | | PR | | | | 25 | 4 | 21 | | /alue: | Public Hea | alth Enhar | cement - | SSOs | | | | AP, Alternatives 1, 2, 3 (all t | | | | |--|--
--|--|------------------------------------|----------------------------------|------------------------------------|--------------|--|--------------------|-----------------------------------|----| | | Measure | | | Release | e Impact | | | Rationale | Measurement Method | | | | Performance
Measures | SSOs | Basement
Flooding
or
Park or Blue-
Line Stream >
50,000 Gals
or
>200,000 Gals | Residential
Area > 50,000
Gals
or
Park or Blue
Line <50,000
Gals
or
> 100,000 Gals | Release
50,000 -
99,999 Gals | Release
20,000-49,999
Gais | Release
10,000 -
19,999 Gals | No discharge | Not all discharges violate the Clean Water Act.
Discharges vary in the impact to public health
and the environment. Therefore, EPA developed
guidance on how to set priorities based on the
risk to the public's health and the environment
under their Enforce | | SO discharge a
e distance from | | | > | 6 Month | 25 | 20 | 15 | 10 | 5 | 0 | Releases 900,000 gallons | 25 | 0 | 25 | | Frequency | 1 Year | 20 | 16 | 12 | 8 | 4 | 0 | Releases 2,000,000 gallons | 20 | 0 | 20 | | ä | 2 Year | 15 | 12 | 9 | 6 | 3 | 0 | Releases 3,080,000 gallons | 15 | 0 | 15 | | 9 | 5 Year | 10 | 8 | 6 | 4 | 2 | 0 | Releases 4,600,000 gallons | 10 | 6 | 4 | | ш | 10 Year | 5 | 4 | 3 | 2 | 1 | 0 | Releases 5,720,000 gallons | 5 | 4 | 1 | | te - This value s
eximum score of
Acronyms | hoot calculates the aver
25. | rage benefit over th | ne recurrence inte | rvals. A correcti | on calculation is in | ncluded in order | to obtain a | Average Total Se | core | | 13 | | CSO - Combine
FC - Fecal colifo | d sewer overflow
irm
ic information system | | | | | | | Corrected Sco | ге | | 22 | | /alue: | Public Hea | alth Enhai | ncement - | SSOs | | | | | | | | |--|---------------------------------|--|--|------------------------------------|----------------------------------|------------------------------------|--------------|---|--------------------|-----------------------------------|--| | | Measure | | | Release | e Impact | | | Rationale | Measurement Method | | | | Performance
Measures | SSOs | Basement
Flooding
or
Park or Blue-
Line Stream >
50,000 Gals
or
>200,000 Gals | Residential
Area > 50,000
Gals
or
Park or Blue
Line <50,000
Gals
or
> 100,000 Gals | Release
50,000 -
99,999 Gals | Release
20,000-49,999
Gals | Release
10,000 -
19,999 Gals | No discharge | Not all discharges violate the Clean Water Act. Discharges vary in the impact to public health and the environment. Therefore, EPA developed guidance on how to set priorities based on the risk to the public's health and the environment under their Enforce | | SO discharge a
e distance from | via hydraulic mode
ind the GIS to
designated | | > | 6 Month | 25 | 20 | 15 | 10 | 5 | 0 | No Discharge | 0 | 0 | 0 | | quency | 1 Year | 20 | 16 | 12 | 8 | 4 | 0 | No Discharge | 0 | 0 | 0 | | nb | 2 Year | 15 | 12 | 9 | 6 | 3 | 0 | Releases 63,000 gallons | 12 | 0 | 12 | | Fre | 5 Year | 10 | 8 | 6 | 4 | 2 | 0 | Releases 167,000 gallons | 8 | 2 | 6 | | ш | 10 Year | 5 | 4 | 3 | 2 | 1 | 0 | Releases 248,000 gallons | 5 | 2 | 3 | | ximum score of | heet calculates the aver
25. | rage benefit over t | he recurrence inte | rvals. A correcti | on calculation is i | ncluded in order | to obtain a | Average Total S | core | | 4 | | CSO - Combined
FC - Fecal colifo
GIS - Geographi | | | | | | | | Corrected Sco | re | | 7 | | Value: | Public Hea | alth Enhai | ncement - | SSOs | | | | | | | | |-------------------------|---|--|--|------------------------------------|----------------------------------|------------------------------------|--------------|---|-------------------|-----------------------------------|--------| | | Measure | | | Release | e Impact | | | Rationale | Mea | surement | Method | | Performance
Measures | SSOs | Basement
Flooding
or
Park or Blue-
Line Stream >
50,000 Gals
or
>200,000 Gals | Residential
Area > 50,000
Gals
or
Park or Blue
Line <50,000
Gals
or
> 100,000 Gals | Release
50,000 -
99,999 Gals | Release
20,000-49,999
Gals | Release
10,000 -
19,999 Gals | No discharge | Not all discharges violate the Clean Water Act. Discharges vary in the impact to public health and the environment. Therefore, EPA developed guidance on how to set priorities based on the risk to the public's health and the environment under their Enforce | to quantify the S | SO discharge a
e distance from | | | > | 6 Month | 25 | 20 | 15 | 10 | 5 | 0 | Releases 80,000 gallons | 20 | 0 | 20 | | Frequency | 1 Year | 20 | 16 | 12 | 8 | 4 | 0 | Releases 172,000 gallons | 16 | 0 | 16 | | ž | 2 Year | 15 | 12 | 9 | 6 | 3 | 0 | Releases 269,000 gallons | 15 | 0 | 15 | | ē | 5 Year | 10 | 8 | 6 | 4 | 2 | 0 | Releases 393,000 gallons | 10 | 2 | 8 | | u. | 10 Year | 5 | 4 | 3 | 2 | 1 | 0 | Releases 495,000 gallons | 5 | 2 | 3 | | aximum score of | sheet calculates the aver | rage benefit over t | he recurrence inte | rvals. A correcti | on calculation is i | ncluded in order | to obtain a | Average Total So | core | | 12 | | FC - Fecal colife | ord sewer overflow
orm
nic information system | | | | | | | Corrected Sco | re | | 20 | | /alue: | Public Hea | alth Enhar | ncement - | SSOs | | | | | | | | |--|--------------------------------|--|--|------------------------------------|----------------------------------|------------------------------------|--------------|---|-------------------|--------------------------------------|--------| | | Measure | | | Release | e Impact | | | Rationale | Mea | surement | Method | | Performance
Measures | SSOs | Basement
Flooding
or
Park or Blue-
Line Stream >
50,000 Gals
or
>200,000 Gals | Residential
Area > 50,000
Gals
or
Park or Blue
Line <50,000
Gals
or
> 100,000 Gals | Release
50,000 -
99,999 Gals | Release
20,000-49,999
Gals | Release
10,000 -
19,999 Gals | No discharge | Not all discharges violate the Clean Water Act. Discharges vary in the impact to public health and the environment. Therefore, EPA developed guidance on how to set priorities based on the risk to the public's health and the environment under their Enforce | to quantify the S | SO discharge ar
e distance from o | | | > | 6 Month | 25 | 20 | 15 | 10 | 5 | 0 | No Discharge | 0 | 0 | 0 | | Frequency | 1 Year | 20 | 16 | 12 | 8 | 4 | 0 | No Discharge | 0 | 0 | 0 | | n n | 2 Year | 15 | 12 | 9 | 6 | 3 | 0 | Releases 2,000 gallons | 3 | 0 | 3 | | 5 | 5 Year | 10 | 8 | 6 | 4 | 2 | 0 | Releases 31,000 gallons | 4 | 0 | 4 | | ш | 10 Year | 5 | 4 | 3 | 2 | 1 | 0 | Releases 46,000 gallons | 2 | 1 | 1 | | ximum score of | neet calculates the ave
25. | rage benefit over ti | ne recurrence inte | rvals. A correcti | on calculation is i | ncluded in order | to obtain a | Average Total So | core | | 2 | | Acronyms
CSO - Combined
FC - Fecal colifo
GIS - Geographi | | | | | | | | Corrected Sco | re | | 3 | | /alue: | Public Hea | alth Enhar | ncement - | SSOs | | | | | | | | |---|-------------------------|--|--|------------------------------------|----------------------------------|------------------------------------|--------------|--|-------------------
---------------------------------------|--------| | | Measure | | | Release | Impact | | | Rationale | Mea | surement l | Method | | Performance
Measures | SSOs | Basement
Flooding
or
Park or Blue-
Line Stream >
50,000 Gals
or
>200,000 Gals | Residential
Area > 50,000
Gals
or
Park or Blue
Line <50,000
Gals
or
> 100,000 Gals | Release
50,000 -
99,999 Gais | Release
20,000-49,999
Gals | Release
10,000 -
19,999 Gals | No discharge | Not all discharges violate the Clean Water Act.
Discharges vary in the impact to public health
and the environment. Therefore, EPA developed
guidance on how to set priorities based on the
risk to the public's health and the environment
under their Enforce | to quantify the S | SSO discharge ar
e distance from o | | | > | 6 Month | 25 | 20 | 15 | 10 | 5 | 0 | No Discharge | 0 | 0 | 0 | | Frequency | 1 Year | 20 | 16 | 12 | 8 | 4 | 0 | No Discharge | 0 | 0 | 0 | | e de | 2 Year | 15 | 12 | 9 | 6 | 3 | 0 | Releases 13,600 gallons | 3 | 0 | 3 | | ē | 5 Year | 10 | 8 | 6 | 4 | 2 | 0 | Releases 170,000 gallons | 8 | 2 | 6 | | u_ | 10 Year | 5 | 4 | 3 | 2 | 1 | 0 | Releases 282,000 gallons | 5 | 2 | 3 | | ite - This value s | heet calculates the ave | rage benefit over t | he recurrence inte | rvals. A correct | on calculation is i | ncluded in order | to obtain a | Average Total So | core | | 2 | | Acronyms
CSO - Combine
FC - Fecal collife | d sewer overflow | | | | | | | Corrected Sco | re | | 3 | | Value: | Public Hea | alth Enhar | cement - | SSOs | | | | | | | | |-------------------------|-------------------------|--|--|------------------------------------|----------------------------------|------------------------------------|--------------|---|------|---------------------------------|--------| | | Measure | | | Release | e Impact | | | Rationale | Meas | surement | Method | | Performance
Measures | SSOs | Basement
Flooding
or
Park or Blue-
Line Stream >
50,000 Gals
or
>200,000 Gals | Residential
Area > 50,000
Gals
or
Park or Blue
Line <50,000
Gals
or
> 100,000 Gals | Release
50,000 -
99,999 Gals | Release
20,000-49,999
Gals | Release
10,000 -
19,999 Gals | No discharge | Not all discharges violate the Clean Water Act. Discharges vary in the impact to public health and the environment. Therefore, EPA developed guidance on how to set priorities based on the risk to the public's health and the environment under their Enforce | | SO discharge a
distance from | | | > | 6 Month | 25 | 20 | 15 | 10 | 5 | 0 | Releases 600 gallons | 5 | 0 | 5 | | Frequency | 1 Year | 20 | 16 | 12 | 8 | 4 | 0 | Releases 16,000 gallons | 4 | 0 | 4 | | nt
da | 2 Year | 15 | 12 | 9 | 6 | 3 | 0 | Releases 55,000 gallons | 12 | 0 | 12 | | ē | 5 Year | 10 | 8 | 6 | 4 | 2 | 0 | Releases 123,000 gallons | 8 | 4 | 4 | | ш | 10 Year | 5 | 4 | 3 | 2 | 1 | 0 | Releases 160,000 gallons | 4 | 3 | 1 | | ximum score of | heet calculates the ave | rage benefit over t | he recurrence inte | rvais. A correcti | on calculation is i | ncluded in order | to obtain a | Average Total Se | core | | 5 | | FC - Fecal colife | d sewer overflow | | | | | | | Corrected Sco | re | | 8 | | Value: | Public Hea | alth Enhar | ncement - | SSOs | | | | | | | | |--|-------------------------|--|--|------------------------------------|----------------------------------|------------------------------------|--------------|---|-------------------|------------------------------------|---| | | Measure | | | Release | Impact | | | Rationale | Mea | surement | Method | | Performance
Measures | SSOs | Basement
Flooding
or
Park or Blue-
Line Stream >
50,000 Gals
or
>200,000 Gals | Residential
Area > 50,000
Gals
or
Park or Blue
Line <50,000
Gals
or
> 100,000 Gals | Release
50,000 -
99,999 Gals | Release
20,000-49,999
Gals | Release
10,000 -
19,999 Gals | No discharge | and the environment Therefore EDA developed | to quantify the S | SSO discharge a
e distance from | ia hydraulic model
nd the GIS to
designated | | ₹ | 6 Month | 25 | 20 | 15 | 10 | 5 | 0 | Releases 155,000 gallons | 20 | 0 | 20 | | Frequency | 1 Year | 20 | 16 | 12 | 8 | 4 | 0 | Releases 223,000 gallons | 20 | 0 | 20 | | n n | 2 Year | 15 | 12 | 9 | 6 | 3 | 0 | Releases 292,000 gallons | 15 | 0 | 15 | | ē | 5 Year | 10 | 8 | 6 | 4 | 2 | 0 | Releases 360,000 gallons | 10 | 2 | 8 | | ш | 10 Year | 5 | 4 | 3 | 2 | 1 | 0 | Releases 405,000 gallons | 5 | 2 | 3 | | ite - This value s | heet calculates the ave | rage benefit over t | he recurrence inte | rvals. A correction | on calculation is i | ncluded in order | to obtain a | Average Total So | core | | 13 | | Acronyms
CSO - Combine
FC - Fecal colife | d sewer overflow | | | | | | | Corrected Sco | re | | 22 | | Value: | Public Hea | alth Enhar | ncement - | SSOs | | | | | | | | |-------------------------|--|--|--|------------------------------------|----------------------------------|------------------------------------|--------------|---|-------------------|-----------------------------------|--| | | Measure | | | Releas | e Impact | | | Rationale | Mea | surement | Method | | Performance
Measures | SSOs | Basement
Flooding
or
Park or Blue-
Line Stream >
50,000 Gals
or
>200,000 Gals | Residential
Area > 50,000
Gais
or
Park or Blue
Line <50,000
Gais
or
> 100,000 Gals | Release
50,000 -
99,999 Gals | Release
20,000-49,999
Gals | Release
10,000 -
19,999 Gals | No discharge | Not all discharges violate the Clean Water Act. Discharges vary in the impact to public health and the environment. Therefore, EPA developed guidance on how to set priorities based on the risk to the public's health and the environment under their Enforce | to quantify the S | SO discharge a
e distance from | ia hydraulic mode
nd the GIS to
designated | | > | 6 Month | 25 | 20 | 15 | 10 | 5 | 0 | Releases 36,000 gallons | 20 | 0 | 20 | | Frequency | 1 Year | 20 | 16 | 12 | 8 | 4 | 0 | Releases 71,000 gallons | 16 | 0 | 16 | | an | 2 Year | 15 | 12 | 9 | 6 | 3 | 0 | Releases 123,000 gallons | 12 | 0 | 12 | | ē | 5 Year | 10 | 8 | 6 | 4 | 2 | 0 | Releases 204,000 gallons | 10 | 4 | 6 | | ш | 10 Year | 5 | 4 | 3 | 2 | 1 | 0 | Releases 274,000 gallons | 5 | 2 | 3 | | ote - This value s | heet calculates the ave | rage benefit over t | he recurrence inte | ervals. A correct | ion calculation is i | ncluded in order | to obtain a | Average Total S | core | | 11 | | FC - Fecal colife | d sewer overflow
orm
ic information system | | | | | | | Corrected Sco | re | | 18 | | Value: | Public Hea | alth Enhar | ncement - | SSOs | | | | | | | | |-------------------------|--|--|--|------------------------------------|----------------------------------|------------------------------------|--------------|--|-------------------|--------------------------------------|--| | | Measure | | | Release | e Impact | | | Rationale | Mea | surement | Method | | Performance
Measures | SSOs | Basement
Flooding
or
Park or Blue-
Line Stream >
50,000 Gals
or
>200,000 Gals | Residential
Area > 50,000
Gals
or
Park or Blue
Line <50,000
Gals
or
> 100,000 Gals | Release
50,000 -
99,999 Gals | Release
20,000-49,999
Gals | Release
10,000 -
19,999 Gals | No discharge | Not all discharges violate the Clean Water Act.
Discharges vary in the impact to public health
and the environment. Therefore, EPA developed
guidance on how to set priorities based on the
risk to the public's health and the environment
under their Enforce | to quantify the S | SO discharge ar
e distance from o | ia hydraulic mode
nd the GIS to
designated | | > | 6 Month | 25 | 20 | 15 | 10 | 5 | 0 | No Release | 0 | 0 | 0 | | Frequency | 1 Year | 20 | 16 | 12 | 8 | 4 | 0 | No Release | 0 | 0 | 0 | | an I | 2 Year | 15 | 12 | 9 | 6 | 3 | 0 | No Release |
0 | 0 | 0 | | Je . | 5 Year | 10 | 8 | 6 | 4 | 2 | 0 | No Release | 0 | 0 | 0 | | LL | 10 Year | 5 | 4 | 3 | 2 | 1 | 0 | No Release | 0 | 0 | 0 | | aximum score of | heet calculates the ave | rage benefit over t | he recurrence inte | ervals. A correct | ion calculation is i | ncluded in order | to obtain a | Average Total S | core | | 0 | | FC - Fecal colife | d sewer overflow
orm
ic information system | | | | | | | Corrected Sco | re | | 0 | | lue: | Asset Pro | otection | | | | | | | | Solution and Alterantives 1, | | | | |----------------------|------------------------|---------------------|-----------------|--|---|--|---|---|--|--|--------------------------|---|-------------------| | | | Measure | | | | Im | pact | | | Rationale | Mea | surement Metho | d | | | | Flood | Damage | Homes or
businesses are
subject to severe
structural damage | Homes or
businesses are
subject to minor
to moderate
structural damage | Flooding limits access to homes or businesses | Flooding limits
access to
recreational
areas | Standing water
on property, but
access not
affected and no
damage
expected | No standing water | localized stormwater peak nows and | Customer Information Sys | vvallable, historic customer o
stem, or historic observation
expected relative impacts o
ater flows. | ns of flood-prone | | Performance Measures | | Basemer | it Back-ups | Sewer
surcharging
within 6 feet of
ground surface
for more than
20% of manholes | Sewer
surcharging
within 6 feet of
ground surface
for 10 - 20% of
manholes | Sewer
surcharging
within 6 feet of
ground surface
for 5 - 10% of
manholes | Sewer
surcharging
within 6 feet of
ground surface
for 1 - 5% of
manholes | Sewer
surcharging
within 6 feet of
ground surface
for 0 - 1% of
manholes | No surcharging
within 6 feet of
ground surface | First floor levels are typically 1 - 2 feet above ground surface, and basement floors are typically 8 - 10 feet below the first floor. A sewer surcharge of 6 feet below ground surface is highly likely to cause back-ups in homes with basement service. | Measurement methods w | | | | rforman | Storm Events | | • | Most Severe
Impact | | | | Least Impact | No Impact | | | 5 | | | Pel | | 1 | | 5 | 4 | 3 | 2 | 1 | 0 | Assumptions | Base Case Score | Alternative Score | Total Score | | | 6 Month | Most | 5 | 25 | 20 | 15 | 10 | 5 | 0 | | 10 | 0 | 10 | | | 1 Year | | 4 | 20 | 16 | 12 | 8 | 4 | 0 | | 12 | 4 | 8 | | Frequency | 2 Year | | 3 | 15 | 12 | 9 | 6 | 3 | 0 | | 9 | 3 | 6 | | Freq | 5 Year | | 2 | 10 | 8 | 6 | 4 | 2 | 0 | | 8 | 4 | 4 | | | 10 Year | Least | 1 | 5 | 4 | 3 | 2 | 1 | 0 | | 5 | 3 | 2 | | | Not Possible | Not
Poss
ible | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Average | Total Score | | 6 | | This value s | heet calculates the av | rerage benefit o | ver the recurre | nce intervals. A correc | ction calculation is inc | cluded in order to o | btain a maximum sco | ore of 25. | | Correc | ted Score | | 10 | 1, AA Projects 2007/07089 _71ewn_SSS_ModelropPNFICAP _Feb2010Revisions Cost Estimates Jown blending elimination benefit scoring Asset Environment and Eco Francisy sta | Pro | ject #1 | - | | | | | | S_JT | JT NB01A 0 | 3 C | | | | |-------------------|-------------------------|---------------------|-----------------|--|---|--|---|---|--|--|--|--|------------------------------------| | alue: | Asset Pro | otection | | | | | | | | | | | | | | | Measure | | | | Im | pact | | | Rationale | Mea | surement Method | d | | | | Flood I | Damage | Homes or
businesses are
subject to severe
structural damage | Homes or
businesses are
subject to minor
to moderate
structural damage | Flooding limits
access to
homes or
businesses | Flooding limits access to recreational areas | Standing water
on property, but
access not
affected and no
damage
expected | No standing water | Stormwater BMPs can reduce stormwater peaks and reduce extent of flooded areas, while sewer separation may increase localized stormwater peak flows and increase the flooding impacts of storms. Alternatively, purchase of highly impacted properties may be a cheaper way to reduce flood damage and create green space and buffer zones. | Customer Information Systems combined with the amodifications on storm was | vailable, historic customer c
stem, or historic observation
expected relative impacts o
ster flows. | ns of flood-prone | | ce Measures | | Basemen | t Back-ups | Sewer
surcharging
within 6 feet of
ground surface
for more than
20% of manholes | Sewer
surcharging
within 6 feet of
ground surface
for 10 - 20% of
manholes | Sewer
surcharging
within 6 feet of
ground surface
for 5 - 10% of
manholes | Sewer
surcharging
within 6 feet of
ground surface
for 1 - 5% of
manholes | Sewer
surcharging
within 6 feet of
ground surface
for 0 - 1% of
manholes | No surcharging
within 6 feet of
ground surface | First floor levels are typically 1 - 2 feet above ground surface, and basement floors are typically. 8 - 10 feet below the first floor A sewer surcharge of 6 feet below ground surface is highly likely to cause back-ups in homes with basement service. | Measurement methods w
hydraulic grade lines comp | ill be via hydraulic models to
pared to ground surface elec | o quantify the
vations at manho | | Performance | Storm Events | 1 | - | Most Severe
Impact | | | | Least Impact | No Impact | | | | | | Per | | 1 | | 5 | 4 | 3 | 2 | 1 | 0 | Assumptions | Base Case Score | Alternative Score | Total Scor | | | 6 Month | Most | 5 | 25 | 20 | 15 | 10 | 5 | 0 | | 5 | 0 | 5 | | | 1 Year | | 4 | 20 | 16 | 12 | 8 | 4 | 0 | | 4 | 4 | 0 | | Frequency | 2 Year | | 3 | 15 | 12 | 9 | 6 | 3 | 0 | | 9 | 3 | 6 | | Freq | 5 Year | | 2 | 10 | 8 | 6 | 4 | 2 | 0 | | 8 | 6 | 2 | | | 10 Year | Least | 1 | 5 | 4 | 3 | 2 | 1 | 0 | | 4 | 3 | 1 | | | Not Possible | Not
Poss
ible | 0 | 0 | o | 0 | 0 | 0 | 0 | Aver | age Score | | 3 | | te - This value : | street calculates the a | verage benefit o | ver the recurre | nce intervals. A corre | ction salculation is in | cluded in order to o | btain a maximum sc | ore of 25, | | Corre | cted Score | | 5 | | | | 1 | | | Jerre | ersontow | ii pieudi | ng Elimi | nation - C | Original IO | AP Solut | ion | | |---|--|---|--|---|---|---|--|---|--|--|--|--|--------------------| | Value: | Environmental I | Enhancement | | | | | | | | | | | | | Aspect | 4 | 4 | -3 | | -1 | | 50 | oring | | | | Assumptions | Score Per Asp | | Aquetic and | Simplestian of hisbook for own o | | Smneton of neur
anount | | More proper amount to existing | | More extensioned of | Danker starens | Creation of more amount of | Creation of significant emount | Creation of critical habitas for | | | | Terestrial Habitat.
Protection | endangereil species | enound of common business | of consess tradition | Significant hobital trapporaria | habitet. | Tile impact on hamile! | writing habitan | existing Netral | common habitat | of common habitet | trans or endangered species | Plant elimination restores (Cremowath Plant to intermitant stream habital - its natural
state that has been modified by continuous plant discharges. | 3 | | Aesthetics - Solids
and Floatables | 755+ reductor in viture of
See with no SSF paptics | 50 - 75% of flow with no SAF
removal | 25 - 50% of Sow with no. 555
(Notice of | 10 - 25% of Sow with no SAF
removal | Reduces efficiency of estation
SAF control device. 2 - 10%
of fine with no SAF removal | No change in SAF removal | 0 - 10% of destroyed flow
tracked with practice SSF
removal (screens) | 10 - 25 % of discharged for
treated with positive SGF
removal (borsens) | 25 - 50% of dacharged flow
bested with positive S&F
retroval (accesse) | to - 75% of decharged flow
treated with positive DAF
common accesses | 75% - of discharged fine
treated with positive RAP
removal (screece) | No sultions will provide changes in SSF Removal | 0 | | | | | | | | | | | | | | | | | Aesthetics - Odor
and Air Emissions | Criside entroying order source offering # 20 customers often | Create etempting older mounts
effecting +20 toutloners often
or +20 sustainers occeanised | Create screeping oder source
is effecting <20 customers
occasionally | Create detectable odor source
affecting = 50 tousiumers aften | Create delectable ador
neuros effecting < 50
instantes occasionally | No impact on oders | Eliminate delectable inter-
source effecting + 50
continues occasionate | Eliminate detectable notice source affecting > 50 customers often | Eleverate accoying oder many
affecting <20 customers
occusionally | e Element arroying day source
affecting +20 customers often.
sr +20 customers occessorally | Element annoying odor
source affecting +20
continues often | Other will be administed from all overflows along Joven interceptor being alternated.
Treatment Plant adom alternated accept for most storage and puring states passed. | 3 | | Dissolved Oxygen
mpacts | Reduction of in severe DC by
regil + during striked false period | Continues reductor of a-
extraor DO of 2 ings = | Continuous reduction of example of the street DO of D-2 right, presides induction of in-
streets DO 2-4 right outring or the property DO 2-4 right outring. | transmittent reduction of in
stream DO 2 ergs + preside
turing non-critical conditions,
reduction of DO 0 - 2 mgf during
critical conditions. | Voluminities reduction of in-
stream DO 0 - 2 mg/ possible
during non-critical conditions | No DO Inguich | intermittent ingrovement of
in others DO 8 - 2 mg8 | internities ingrovement of
overseen DO 2 regil v
internities tracked condition
ingrovements 5 · 2 regil | Continuous improvement of a
stream DO 8 - 3 mg/l
improvements 2-d mg/l | Conditional inprovement of in-
strain DO 2 mgb • | Cardinuosa improvement of
critical condition in eleven DC
2 mg/l + | Plack efficient land elementary and provide represented of in obtain DOO - 2 right land obtains may day up in surrows. | 1 | | Downstreem
Impacts | 79% increase in arount 800 or outside leads | 50 - 75% horsees in process
BCIC or numerol bears | 25 - 50% inclnates in arrival
BOD or nutrient locate | 10 - 15% increase in entruel
800 or nutrient treets (CSC +
nutrient) | Potential 0 - 10 % increase in
instruction of CSC + runoff | No impact on BOO or ruleing loads (CBO + runnif) | 2 - 10% reduction in annual
BIDD of material basis (CSC
- runos) | 10 - 25% reduction in every
8000 or nutrient leads (CSI
+ nunoff) | 25 - 50% resturation in arrower
8000 or number liseas (CSO +
runoff) | 35 - 75% reduction in annual
8000 or number limits (CSO +
number) | 75%+ reduction in enruel
800 or nutrient loads (050 -
runoli) | Improved capture and Electrical SSCs will provide 0 - 10 % reduction in annual BOD or restricts hade (SSC - runost) soverest and adjusted Capture. | 1 | | Stream Flow
Impacts (Peak
flows) | 25% - norman ri pesit films | 10% - 25% repassa at pask.
Nove | Up to 10% increases in pass.
Book | Fraquent incresse in time sturing critical conditions. | Possible increase in average
flow, or major nursease in high
flow peaks | No impact on year flows | Minor reduction in Nowe - n
algorithms peak reduction | Minor reduction in peak
films under some condition | Up to 10% reduction in posit
Freet | 10% - 25% reduction is year
form | 25%- reduction in peak flows | Flow pasint to be reduced due to diversion of plant officers. | 3 | | Streem Flow
Impacts (DWF only) | 2514- decrease in few during
critical conditions. | 10% - 25% decrease in fine
during critical conditions | 0-10% permanent decrease
in their during critical
conditions | Frequent decrease in flow states
unless considera | Fossible decrease in average
flow | t life impact on avecage or
base of earn fine | schemitted victoria in
alream how rust trend to
princel conditions | triarmitant increase in
stream flow - often improve
ordered conditions. | 0 - 10% permanent intrease a
dream fore during critical
conditions | n 10 - 25 % permanent romanse
in streem flow during critical
conditions | 25%- pertherent increase in
observ furing critical
conditions | Base for midisteristly reduced, but the restricts stream to its natural condition pushion and negative impacts bisance and | o | | instructions: (1.) Sc
total score for this s | ors sech alternative for
alternative in this value, | each of the seven aspe
(3.) Shaded area repres | ects of the value. Score
ents "fetal flew". Alten | es can be positive or neg
netives that score in this | ative, depending on the
area should not be pro | e impact of the alterna
oposed. | otive on the value. (2.) | Total the scores for e | ech aspect to get the | | Total | Raw Score Calculated | 11 | | Aspect | Rationale | | | | | | Measurement I | Mathod | | | | Corrected Score | 11 | | Aquatic and
Ferestrial Habitet
Protection | shape and characteristic | s etc. Predicitive models | used to evaluate wel we | th changes in base flow, positive control measures to
nather control measures to
nate future positive and ne | we a limited ability to pre | ne cover, channel
edict biological diversity | and configuration, tree
and other water qualit | y impacts. Flow model | models will address DO | Note: The total score c | siculated may be more | than 25. In the instances where this might occur, a default man | dmum score of 25 v | | Aesthetics - Solids
and Floatables | advanced treatment optic | ins. Storm water retention | n, constructed wetlends | overnents in capture rates
and other control system
y, penalty points will be ass | may provide solids and | floatebles removal as | all sites with control to
will be estimated for a
advanced treatment to | echnology, improvement
it alternatives that add a
echnologies. Where tre | creening or other | | | | | | Assthetics - Odor
and Air Emissions | Odors and air emissions
by both the intensity and
from sewage handling fac | the quality of the odor. D | age systems, pursp state and annoying | iotis, force mains, and long
are two common descripto | flet sewers. Odors are
is of different intensities | generally characterized
and qualities of odors | intensity, quality, and a
level of evaluation is no
rare circumstances. I
estimated based on ty | sewage handling facilitis
geographic spread. Fo
of common, and will no
The potential for odor ar
pical applications and of
of events, sverage flow | planning purposes this
be done except in very
d air emissions will be
widel predictions for | | | | | | Dissolved Oxygen
mpacts | Dissolved oxygen in stree | erns is dependent on a va | triely of factors including | BOD load, nutrient load, a | tream flow velocity, water | er temperature, etc. | of various loading con | unity Tool will be used
ditions, flows, temperat
rojects will be estimate
condition scenarios. | res, etc. Probable | | | | | | Downstream
impacts | been identified as the sou | or to conditions in the Ohi
erce of 30 - 45% of the tot
have detrimental impacts | tel nutrient kieds reachin | County, Nutrient loadings i
g the Gulf of Mexico, SIOD | n the Ohio (not just Jeffe
is not likely to persist in | erson County) have
the river long enough | | be estimated based or
he downstream impacts | reductions in annual
are primarily long-term | | | | | | tream Flow
npacts (Peak
lows) | Extremently high peak for make water based recrea | ws as are often caused b
tion unsafe or impractical | y urbanization of a water. | rshed can erode the stream | nhed, damage aquatic a | nd terrestriel habitet, | sources, and the Water | estimate flow peaking I
or Quality Tool has a hy
during various storm e | fraulic component to | | | | | | treem Flow
mpacts (DWF only) | Diversion of flows away fr
measures such as ground | om a stream due to abor
Swater pumping can incre | donment of a treatment | plant etc. can reduce base
eficial results. | flows in a stream. Alter | matively, other control | | s a hydraulic componen | evidual sources, and the
to estimate stream | | | | | | Acronyms
IGC - Seargrass Cred
IGD - Biological oxyg
ISO - Combined sew | en demand | | DO - Dissolved oxygen
DWF - Dry weather flow
mg/l - Milligram per liter | | S&F -
Solids and floatab | oles | | | | 1 | | | | | Environmental E -5 Simmator of repose to zero or water precise | 4 | | | | | | | | | | | | |--|--|--|--|--
---|--|---|--
---|--|---|--| | Eliminatury of Hallital for yarm or | District Control of the t | | | | | | optic | | | | | | | Einterators of nations for care or
enablingered species | | -3 | -2 | -1 | 8 | 1 | oring 2 | 3 | 4 | 5 | Assumptions | Score Per Aspect | | AND DESCRIPTION OF THE PARTY OF THE PARTY. | Etherates of significant
amount of common habitat | Elimination of mittor amount
of common feature | Significant habital imperament | More imperement to estalling
hybran | No impact on habital. | Minor enhancement of
existing historial | Significant echanisment a
existing habital | Creation of minor amount of
common habited | Creation of significant amount
of common habital | Charten of critical habital for
tars or andungment species | | | | 75% restriction in volume of | 50 - 75% of fine with my BEF | 26 - 90% of Sale with our East | 10 - 25% of Now with no Stalf | Reducas efficiency of exister
SIMF control device, 0 - 10% | | 0 - 10% of decharged line | 10 - 25 % of discharged fo | = 20 - 50% of decharged flow | 50 - 79% of doctrorged from | 19th a of discharges have | | | | fine with our SAF capture | removed | CHECKER | removel | SSF control device, 0 - 10%
of how with no SSF removal | His shange in SAF removel | reated with positive DAF
removal (screens) | Tested with provides SAF | Pasing with positive SM
removel (streens) | treated with positive S&F
ramoval Screens | Vested with positive GAF
removal (screens) | | | | | | | | | | | | - | | | | | | Create enoughing oder source of selecting + 20 customers often | O'alds animaling oder enlarce
effecting GD quetomers often | Cress everying odor source
offecting +30 customers | Create delectable ador source
offentee a 50 centeres offen | Create detectable odor
source affecting + 50 | has
impact on odors | Contrara desectation ador
source effecting + 50 | Eliminate delectatio esta
anucca affecting + 50 | (Science entroping oder source
effecting <20 customers | elizate arroying our source
effecting <20 customers offer, | Discouse arranging over
assure effecting +20 | | | | | a +26 materiers scranings | accessorally | | customers occasionally. | | customers accessorally | customers often | occasionally | or +20 continues occasionally | contamers often | | | | | | | | | 1 | - | _ | | | | | | | | | Continuous reduction of in- | intermittent reduction of in | | | | | | | - | | | | Restaction of its greats DO by 2
right is during critical falls period | Continuous reduction of in-
extrem DC of Zings + | possible reduction of in- | street DO 2 mgl + possible
during non-critical conditions,
cohorton of DO 6 - 2 mod 4 min | intermittent reduction of in
stream DO 0 - 2 mg/ possible | Ne DO Inquicts | Intermittent triprovement at
Investment DO 6 - 2 mg/l | in etream DO 2 mg/l *,
intermittent scilical condition | atraum DO 5 - 2 mgt,
intermitant critical condition | Continuous improvement of to
stream DO 2 mg/t + | Continuous improvement of
ordical condition in attent DO | | | | | | strikead consistency | orikel conditions | during non-critical concession | | | Improvements 0 - 2 mg/l | Improvements 2-4 mg/l | | 2 mg1 * | | | | | | | | | | | | | | | | | | 75fer increase in ennuel BOD
or outlest leads | 50 - 75% increase in armint
BCID or nutrient loads | 25 - 50% increases in annual
SOD at huthert loads | SCO or nutrient leads (CSC + | Potential D - 10 % provide of
armost everage BOD or
published trade (CBD) a purelli | No impact on BOD or nutrien
loads (CBO = nunell) | BCC or nutrient hauts (CSC | BCC or outstand leads (CSC | BOD or nutrient hads (CSO + | \$00 or nutrient leads (CSC) + | BCO er nutrient treats (CSC) - | | | | | | | | Premitre provides in average | | | | | | 1930) | | | | 29% - ricrasca in past, from | foes | time. | critical conditions | Now or minor this same in high
flow peeks | tile impact on peak flows | significant peak reduction | fires under some condition | Op to 10% reduction in peak
flows | fore | 25%+ reduction in year, fixes | | | | | | | | | | | | | 1 12 - | | | | | 25% decrease in fine during
critical conditions. | 10% - 25% decrease in fine
during critical conditions | to Now during critical | Frequent decrease in Now during ordered constitutions. | Possible decrease in everyone | His impact on everage or
home present flow | priemitant repeats to
stream for - not freed in | intermittent increases in
streets flow - offers improves | 0 - 10% permanent increase i
streem five during critical | n 10 - 25 % permanent incresse
in steem few items critical | 25% permenent increase in
stream flow storag critical | | | | | | | | | | (Intra constant | trem inches | Cordon . | - Contraction | in the same | | | | re each atternative for s | each of the seven aspe | ots of the value. Score | s can be positive or neg | ative, depending on th | impact of the alterna | tive on the value. (2.) | Total the scores for a | sch aspect to get the | | | | | | ternative in this value. (| 3.) Shaded area repres | ents "fatal flew". Alten | natives that score in this | area should not be pro | posed. | | | | | Total | Raw Score Calculated | • | | Pationala | 7 | | | | | Management N | Anthod | | | | Corrected Score | | | Canonino | 1-2- | | | | | | | | | 7.7 | | | | Wet weather projects may | affect both equatic and | terrestrial habitat throug | h changes in base flow, pe | eak flow, water quality, tr | ee cover, channel | and configuration, tree | cover etc. Predictive | models will address DO | Note: The total across o | alcutated may be more t | han 25. In the lentances where this minut occur a default many | terrors across of 95 will be | | shape and characteristics
changes, wester impacts | etc. Predictive models
etc., so surrogala metric | used to evaluate well we
on must be used to entire | ather control measures he
sale future positive and ne | we a limited ability to pre-
pative impacts. | dict biological diversity | and peak flow rates to | ripacts. Flow models
allow estimates of cha | i will predict base flow
inges in erosion and wate | calculated. | anchesies may be more. | tion 25. In the manuscree where the might occur, a seraut ma | omum score or 25 will to | | | | | | | | Surface area. | Most CSOs have some fo | rm of solids and floatable | es control baffles, Impro | vernents in capture rates o | onn be expected with scr | eening or other | all sites with control to | chnology, Improvemen | its in removal efficiencies | | | | | | sdvanced treatment option | ns. Storm water retentio | n, constructed wetlends. | and other control systems | may provide solids and | floatables removal as | advanced treatment to | chnologies. Where tre | atment is proposed for | | | | | | | | | | | | removal data. | a ramovana viin par stani | marine sussess on publisher | | | | | | | | | | | | | | | 1 - 1 - 30 | | | | | | | | | | | Odor emissions from a | ewage handling facilitie | es can be modeled for | - | | | | | Odors and air emissions o | can be generated in ston | age systems, pump stati | ons, force mains, and long | flat sewers. Odors are | generally characterized | level of evaluation is n | ot common, and will not | be done except in very | | | | | | om sewage handling faci | ities. | the and analysis | an two common descripto | S Of Division States | and qualities in occurs | estimated based on ty | pical applications and n | nodel predictions for | | | | | | | | | | | | storage time, number | of events, everage flow | velocities etc. | For BGC the Water Co | only Tool will be used t | o estimate the impacts | | | | | | Dissafved oxygen in street | ms is dependent on a ve | riety of fectors including | BOD load, nutrient load, at | tream flow velocity, water | and the same of the same | impacts of individual p | rojects will be estimated | ires, etc. Probable
I besed on comparisons | | | | | | | | | | | | to the various stream | condition scenarios. | een identified as the sour | ce of 30 - 45% of the tot | al nutrient loads reacting | the Gulf of Mexico. BOD | is not likely to persist in | the river long enough | average loads, since t | | | | | | | | yer so the Ode, but can i | nave dedimental impacts | Tar sownower. | | | | and cumulative. | | | | | | | | | | | | | | Predictive models den | extense flow neaking (| action from individual | | | | | | attendently high peak flow
wike water based recreat | es as are often caused by
ion unsafe or impractical | y urbanization of a water
L | shed can erode the stream | nbed, demage aquatic a | nd terrestrial habitet, | sources, and the Wate | Cuality Tool has a hy | drautic component to | harries of Source annual fron | | decimant of a transmission | | | | | | | | | | | | mesures such as ground | water pumping can incre | ese bese flows with beo | eficial results. | man er e susem. Ader | morely, other control | Water Quality Tool has
flows during various dr | a hydraulic componen
y weather events. | to estimate stream | | | | | | | 13 | | | | | | | | | | | | | and the property of proper | tenderion of to others DO by 2 of 1 every strike the period of 1 every strike the stri | tenderion of to others DO by 2 Continuous reduction of in- get 1 comp stratus feet personal seem DO of Engli 1 201- Increase is amoust 800 00 - 10's brownes in service 100's reduced tender 30's increase in peak 30's increase in peak 100's 30's 30's increase in peak 100's 30's 30's 30's 30's 30's 30's 30's | The noneman from any office of the server aspects of the values. Score control in this value. (3.) Shaded area represents "fitted files". After movemen from any office or control in the server of the control in cont | The normal is not a continued of the service of the value. Scores can be positive or negaritative for each of the service and service of the value. Scores are the positive or negaritative for each of the service of the value. Scores are the positive or negaritative for each of the service of the value. Scores are the service of the value. Scores are the positive or negaritative for each of the service of the value. Scores are the positive or negaritative for each of the service of the value. Scores are the positive or negaritative for each of the service and for the value. Scores are the positive or negaritative for each of the service and the value. Scores are the positive or negaritative for this value. (2.) Shaded area represents "fetal flew". Alternatives that score in this value, (2.) Shaded area represents "fetal flew". Alternatives that score in this value, (3.) Shaded area represents "fetal flew". Alternatives that score in this value, scores are the positive or negaritative flew of this value. Scores are the positive or negaritative flew of this value. Scores are the positive or negaritative flew of this value and the | The noneman is served 500 by 2 Continues an expect of the control | September 1 in America (1 A | Combined in reliable of the seven in process of a press DD by Continue and education of the seven to do 2-d and continued in reliable of the 3-d | Combinate readout of the common commo | Combined analysis of the company | Interest to the Diff. To Selb-own antiferror of the Control | Section of control (1972) Control control (1974) Control control (1974) Control control (1974) Control control (1974) | And the control of th | | | Te = | | | Jener | SUITOWII | Dienani | g Lilling | ation Eva | luation - | Original | IUAP 30 | Jution | |
---|--|---|--|--|--|--|--
--|--|---|---|--|-----------------| | Value: | Eco-Friendly | y Solutions | | | | | | | | | | | | | Aspect | -5 | -4 | -3 | -2 | -1 | 0 | 1 1 | coring 2 | 3 | 4 | 5 | Assumptions | Score Per Aspec | | Non-Renewable
Energy
Consumption | Primary energy
consumption is greater
than secondary
freatment | Primary energy
r consumption equal to 75 -
100% of secondary
treatment | Primary energy
consumption equal to 30 -
75% of secondary
treatment | Primary energy
consumption equal to 15
30% of secondary
treatment | Primary energy consumption
equal to 0 - 15% of
secondary treatment | No energy consumption
except for cleaning and
maintenance | Cleaning and maintenance
not needed, no primary
consumption | NA . | NA | NA . | NA | Energy consumption needed for storage and pump station at the plant. 95% of flow pumped, secondary treatment still required end of pipe | -4 | | Use of Natural
Systems | Constructed teclibles
permanently displace
5+ acres wetlends or
50% locally available
green space | Constructed facilities
permanently displace 3 - 5
acres wetlands or 25 - 509
locally available green
space | Constructed facilities
permanently displace 1 - 3
acres wetlands or 10 - 159
locety available green
space | Constructed facilities
permanently displace 0 -
secre wetlands or up to
10% locally available
green space | Constructed facilities
temporarily disrupt wellands
or green space | Alternative does not use or
affect natural systems,
wetlands, or green space | Alternative doesn not use
natural systems, but
enhances green spece or
wetland | Natural systems play a minor
role in afternative function,
up to 1 acre wetlend or 10%
additional green space
created | n Natural systems are
significent part of alternative
function, 1 - 3 acres of
wetland created or 10 - 25%
additional green space | Alternative fully uses natural systems, 3 - 5 ecres of wetland created or 25-50% additional green space | Afternative results in multi-
use natural system
development, 5+ occes of
welland or 50% additional
green space | Construction would temporarily disrupt green space, but potentially allow new green space to be created at the existing plant site. | 1 | | Multiple-Use
Facilties | Constructed facilities
permanently airminate
recreational
opportunity | Constructed facilities
significantly impera
recreational opportunity | Constructed fecibles
moderately impare
recreational opportunity | Constructed facilities have
minor impacts on
recreational apportunity | Construction temporarily
impacts recreational
opportunity | No impacts on recreational opportunities | Alternative improves access to existing recreational areas | Alternative has limited positive impact on recreation | Atternative significantly enhances recreational opportunities | Atternative increases recreational opportunities in area | Atternative results in multi-
use facility | Portion of plant site poslid be converted to multi-
use recreation when treatment process is
decommissioned. | 2 | | Source Control
of subwatershed
pollutant loads | Pollutant loadings are
increased by SO% | Polistant leadings are
increased by 30 - 50% | Pollutant leadings are
increased by 10 - 30% | End of pipe pollutant
loadings are increased by
0 - 10% | End of pipe pollutant
loadings impacts are
inconsistent, but likely higher | End of pipe pollutant loading
are unchanged | Diversion trensfers more
in their 25% of pollutant
loadings to less sensitive
receiving water | Diversion transfers more
than 50% of pollutant
loadings to less sensitive
receiving water | Diversion transfers more
than 75% of pollutard
loadings to less sensitive
receiving water | Diversion transfers more
than 90% of pollutant
loadings to less sensitive
receiving water | Diversion transfers more
than 100% of pollutant
loadings to less sensitive
receiving water | 94% of pollutant leads transferred to Ohio
River, a less sensive watershed. | 4 | | Non-Obtrusive
Construction
Techniques | Permanent loss of
green space or
sensitive area
disruption | Main thoroughfare
closures, sensitive area
temporery disruptions | Widespread dust and
noise, blesting, secondary
street closures | Localized dust, noise and local street closures | Minor dust and noise, treffic
lene closures | No construction impacts | NA | NA . | NA | NA | NA . | Construction would cause localized dust and noise with street closures | -2 | | Consistent Land
Use | Intrusive or nuisance
fedities incursistent
with neighborhood or
land use. | Facilities inconsistent with
neighborhood or land use. | Facility characteristics
mitigated to reduce impact
on neighborhood | Facilies have significant
impact on development
density or land use | Facility has minor impact on
development density or land
one | No impact on land use or no above ground facilities | Alternative mitigates
existing compatibility
problem | Alternative removes facility inconsistent with
neighborhood | Alternative
removes nuisance facility from neighborhood | Atternative enhances
property values in
neighborhood | Alternative provides
enhancements that
significantly improve
neighborhood | Facilities on plant site will be reduced to a
pump station and storage facility, eliminating the
existing incompatable use of a treatment
facility. | 2 | | Impermeable
Surfaces | 5 acres + of
impermeable surfaces
are added | 3 - 5 acres of impermeable
surfaces are added | 1 - 3 acres of impermeable
surfaces are added | up to 1 acre of
impermeable surfaces are
added | Minor increase in
impermeable surfaces
added | No change in impermeable surface | Minor reduction in
impermeable surfaces | Up to 1 sore of impermentile surfaces removed | 1 - 3 acres of impermeable
surfaces removed | 3 - 5 acres of impermentile
surfaces removed | More than 5 ecres of
impermeable surfaces
removed | No change in impormable surface in all options | 0 | | LEEDS
Performance | NA | NA | NA | NA | NA. | LEEDS not applicable or
LEEDS score <10 | LEEDS Score 10 - 25 | LEEDS Certified | LEEDS Silver | LEEDS Gold | LEEDS Pletinum | LEEDS not applicable or LEEDS score < 10 | 0 | | instructions: (1.)
to get the total so | Score each alternations for this alternat | ive for each of the eig
ive in this value. (3.) S | ht aspects of the value
Shaded area represents | s. Scores can be posi
s "fatal flaw". Alterna | tive or negative, depend
dives that score in this | ding on the impact of the
area should not be prop | se alternative on the va | lue. (2.) Total the score | s for each aspect | | Total Raw Score | Calculated | 3 | | | | | | | | | | | | | | | | | Aspect | Rationale | | | | | | Measurement M | Method | | | Corrected 5 | Score | 3 | | | Eco-friendly solutions w | rould be expected to be low
for high energy consuming a | consumers of non-renewable
alternatives. | energy. Benchmarking en | ergy consumption against com | ventional secondary treatment | Measurement M | gy consumed per MG of flow tr | realed, compared to the | Note: The total score
maximum score of 25 | calculated may be m | ore than 25. In the instances where th | | | Aspect
Non-Renewable
Energy | Eco-friendly solutions w
provides penalty points
Natural systems replace | for high energy consuming a
e concrete and steel constru | ellernetives. | e legoons, constructed bios | rrgy consumption against com
waters, rain gardens etc. that is | | Measurement M Evaluation of primary energy energy consumed at the W Acres of westlands, and other | gy consumed per MG of flow tr | d or eliminated. Also includes | Note: The total score
maximum score of 25 | calculated may be m | | | | Aspect Non-Renewable Energy Consumption Use of Natural | Eco-friendly solutions w
provides penalty points
Natural systems replac-
various kinds. Options
Eco-friendly solutions of | for high energy consuming a
e concrete and steel constru-
that reduce wetlands and gr
create recreational apportunit | ellernatives,
sction with well bottom storage
even space get penelty points | e lagoons, constructed bios- | wales, rain gardens etc. Usat in | ncrease green space of | Measurement M Evaluation of primary energy energy consumed at the W Acres of wetlands and othe subjective evaluation of the Subjective evaluation of ch | gy consumed per MG of flow to
CWTP per MG treated.
or types of green space created
"besis" of the alternative - "gri
enges predicted in the aquatic
y, increased base flow or decre
y, increased base flow or decre | of or eliminated. Also includes
een" or "grey". | Note: The total score
maximum score of 25 | calculated may be m | | | | Aspect Non-Renewable Energy Consumption Use of Natural Systems Multiple-Use | Eco-friendly solutions was provided penalty points Natural systems replace various kinds. Options Eco-friendly solutions of the direct water-based or | for high energy consuming a
e concrete and steel constru-
tivit reduce wetlands and gr
create recreational opportunity
create recreation. Bird watching, his
dis at the source through bed | atternatives, uction with wet bottom storage, uction with wet bottom storage, uction storage, uction with with the storage uction of | e legions, constructed bloss, . (parian recreation, Boeting etc., would be considered.) | wales, rain gardens etc. Usat in | ncrease green space of would seeing, swimming etc. would | Measurement III Evaluation of primary energy energy consumed at the W Acres of vertilands and othe subjective evaluation of the subjective evaluation of the result of letter value quality tree cover or vegitated rips Modeleel land-side politican | gy consumed per MG of flow to
CWTP per MG treated.
or types of green space created
"besis" of the alternative - "gri
enges predicted in the aquatic
y, increased base flow or decre
y, increased base flow or decre | t or eliminated. Also includes
men' or 'grey'. or ignarien environment as a
nessed flow peaks, increased
sted by the BGC Water Qualifi. | Note: The total score
maximum score of 25 | calculated may be m | | | | Aspect Non-Renewable Energy Consumption Use of Natural Systems Autitiple-Use acitities Source Control of ultiwaterahed Solutant loads Aon-Obtrusive Construction | Eco-friendly solutions we provides penalty points. Natural systems replact various kinds. Options the direct water-based in Controlling pollutant beautiful penalty and pipe the evolving and of pipe the | for high energy consuming a
e concrete and steel constru-
tive reduce wetlends and gri
meate recreational opportunity
meate recreation. But watching, his
do at the source through behaviored requirements. | alternetives, uction with wet bottom storage even space get penelty points es for both weter-based and king, bilding, picnicing, campir havior modification, product n | e legoons, constructed bloss. (parism recreation. Bosting etc., would be considered etc., would be considered etc., would be considered.) | weles, rain gardens etc. that is
that is
to canoing, keyeking, fishing,
to canoing, keyeking, fishing,
related siparien recreation. | wading, swimming elic, would use pollutants thereby | Measurement II Evaluation of privacy energy energy consumed at the W Acres of vertilands and othe subjective evaluation of the subjective evaluation of the result of letter value quality tree cover or vegitated tips Modeled land-side politican Tool or by comparison to it | by consumed per MG of flow to CVVTP per MG treated. If the special of the stematic creation is a special or types of green space creation the stematice - "girl angues predicted in the equation," in creased base flow of decreased | of or eliminated. Also includes
need or "grey". or rightrien environment as a
nessed flow peaks, increased
the by the BGC Water Quality
in measurements. | Note: The total score
maximum score of 25 | calculated may be m | | | | Aspect Non-Ranewable Energy Consumption Use of Natural Systems Autiple-Use acities Source Control of Subwatershed collutant loads Non-Obtrusive Construction echniques | Eco-friendly solutions up provides penalty points Natural systems replact various kinds. Options or be direct water-based or Controlling pollutant lose avoiding end of pipe ten direct water-based or prohable construction in missance conditions. Alternative configuration uply. The aume pumps | for high energy consuming a
e concrete and steel constru-
tive treduce wetlends and gra-
mate recreational apportunity
materials of the second apportunity
do at the source through be-
stment requirements. | alternetives, uction with wet bottom storage een space get penelty points ees for both water-based and long, leisting, campie share medification, product re sharing are all measures of the fi | reparian recreation. Boating of the would be considered to the considered applicaments or stormwaler brendliness of an alternative worty. For example, an extract the neighborhood. If a | weles, rain gerdens etc. that is canning, keyeking, fishing, canning, keyeking, fishing, raided riparies recreation. menagement BMPs that capts. Construction impacts get permitty pump station on larger parcel of lond is evaleting larger parcel of lond is evaleting the parcel of lond is evaleting. | eading, swimming etc. would use pollutants thereby wratly points for creating can be noisy, smelly, and | Measurement II Evaluation of primary energy energy consumed at the W Acres of wetlands and othe subjective evaluation of the result of better water quality tree cover or vegitated rips Modeled land-side politicar Tool or by compensate to it Subjective evaluation of pro- construction envisioned for At the plenning level, proje- strumming properies. De- | by consumed per MG of flow to CVVTP per MG treated. If the special of the stematic creation is a special or types of green space creation the stematice - "girl angues predicted in the equation," in creased base flow of decreased | of or alliminated. Also includes
the "grey". or ignation serviconnend as a
newed flow peaks, increased
the service service service of
the service service service or
the service service of
the service service service service
the service service service service
the service service service service
the service service service service
the service service
the service service
the service
the
the service
the se | Note: The total score
maximum score of 25 | calculated may be m | | | | Aspect Non-Renewable Energy Consumption Use of Natural Systems Autopie-Use Facilities Source Control of ubwatershad | Eco-friendly solutions as provides penalty points Natural systems replact various kinds. Options on the direct water-based in direct water-based in Controlling pollutant lose avoiding end of pipe ter various kinds on the direct
water-based in water based on dire | for high energy consuming a
e concrete and steel constru-
tivat reduce wetlends and gr
reate recreational apportunity,
as at the source through behaviour or the
stream requirements. It can either enhance or defer
tation can be "disputed" as
decepting, and a community of
faces increases total number. | alternetives, viction with wet bottom storage een space get penalty points in get penalty points and in get penalty points and in get penalty eet from the surrounding prog a residence that fits right in gerden or other green space | riperian recreation. Boeling set, would be considered biose of an alternative with the neighborhood. If a added to anhance the neigh as added to anhance the neigh a, and the total iransport of the sould be and the total iransport of the sould be and the total iransport of the neighborhood. | welles, rain gardens etc. that is canning, keysking, fishing, canning, keysking, fishing, canning, keysking, fishing, canning, keysking, fishing, canning, keysking, k | eading, swimming siz, would
are pollutants thereby
malty points for creating
can be noisy, smelly, and
late, a pump station can be | Measurement II Evaluation of privacy energenergy consumed at the W Acres of wellands and other subjective evaluation of the subjective evaluation of the subjective evaluation of the subjective evaluation of the subjective evaluation of properties of the subjective evaluation of proceedings of the subjective evaluation evaluati | by consumed per MG of flow by CWTP per MG breated. In types of green space creates "besis" of the atternative - "gin any space of the atternative - "gin any space of the atternative of the any space of the atternative of the any space of the atternative of the atternative values or pilot program to atternative values or pilot program to a space of the atternative | of or alliminated. Also includes
the "grey". or ignation serviconnend as a
newed flow peaks, increased
the service service service of
the service service service or
the service service of
the service service service service
the service service service service
the service service service service
the service service service service
the service service
the service service
the service
the
the service
the se | Note: The total score maximum score of 25 | calculated may be m | | | | Project #1 | | | | | | | 2 11 1 | IT_NB01/ | 4 03 C | | | | | |---|--|---|--|--|---|--|---|--|---|---|---|--|-----------------| | /alue: | Eco-Friendly | Solutions | | | | | | | | | | | | | Aspect | -5 | 4 | -3 | -2 | -1 | 0 | S | coring | 3 | 1 | 5 | 1 2 | | | ion-Renewable
nergy
onsumption | Primary energy
consumption is greater
than secondary
treatment | Primary energy
consumption equal to 75 -
100% of secondary
treatment | Primary energy
consumption equal to 30 -
75% of secondary
treetment | Primary energy consumption equal to 15-30% of secondary treatment. | Primary energy consumption
equal to 0 - 15% of
secondary treatment | No energy consumption
except for cleaning and
maintenance | Cleaning and maintenance
not needed, no primary
consumption | NA . | NA S | NA . | NA S | Assumptions Energy consumption due to increase in primping | Score Per Aspec | | se of Natural | Constructed facilities
permanently displace
5+ acres wetlands av
50% locally available
green space | Constructed facilities
permanently displace 3 - 5
acres wellands or 25 - 50%
locally available green
space | Constructed facilities
permanently displace 1 - 3
acres vertiands or 10 - 154
kcelly available green
space | Constructed facilities permanently displace 0 - 1 acre wetlands or up to 10% locally available green space | 1 Constructed fecilities
temporarily disrupt wetlands
or green space | Alternative does not use or affect natural systems; wetlands, or green space | Atternative doesn not use
netural systems, but
enhances green space or
wetlend | Natural systems play a mino
role in alternative function,
up to 1 sere welland or 10%
additional green space
created | Natural systems are
significant part of alternative
function, 1 - 3 acres of
wettand created or 10 - 25%
additional green space | Alternative fully uses natural systems, 3 - 5 acres of wellend created or 25-50% additional green space | Alternative results in multi-
use natural system
development, 5+ acres of
wetland or 50% additional
green space | Force Main construction temporarily disrupts green space | -1 | | lultiple-Use
acilties | Constructed facilities
permanently eliminate
recreational
opportunity | Constructed facilities
significantly impare
recreational opportunity | Constructed facilities moderately impera recreational opportunity | Constructed facilities have
minor impacts on
recreational opportunity | Construction temporarily
impacts recreational
opportunity | No impacts on recreational opportunities | Atemative improves
access to existing
recreational areas | Afternative has limited positive impact on recreation | Alternative significantly enhances recreational opportunities | Alternative increases recreational opportunities in orea | Alternative results in multi-
use facility | No impact | 0 | | ource Control
f subwatershed
ollutant loads | | Pollutarn loadings are
excreased by 30 - 50% | Poliutant loadings are
increased by 10 - 30% | End of pipe pollutant
loadings are increased by
0 - 10% | End of pipe pollutant
loadings impacts are
inconsistent, but likely highe | End of pipe pollutant loading
are unchanged | Pollutent loadings impacts
are inconsistent, but likely
lower | Source control reduces pollutant loadings by 0 - 105 | Source control reduces pollutant loadings by 10 - 30% | Source control reduces pollutant loadings by 30 - 50% | Source control reduces pollutant loadings by more than 50% | End of pipe pollutant loadings impacts are
inconsistent, but tikely higher in all options | -1 | | on-Obtrusive
onstruction
echniques | Permanent loss of
green space or
sensitive area
deruption | Main thoroughfare
closures, sensitive area
temporary disruptions | Widespread dust and
noise, blesting, secondary
street circures | Localized dust, noise and local street closures | Minor dust and noise, traffic
lane closures | No construction impacts | NA . | NA | NA. | MA | NA | Force main construction would result in minor dust and lane closures | -1 | | onsistent Land
se | Infrusive or nultance
facilities inconsistent
with neighfanthood or
land use. | Facilities inconsistent with
neighborhood or land use. | Facility characteristics
mitigated to reduce impact
on neighborhood | Facilies have significant
impact on development,
density or land use | Facility has minor impact on
development density or land
use | No impact on land use or no
above ground facilities | Attenuative mitigates
existing competibility
problem | Alternative removes facility inconsistent with
neighborhood | Alternative removes numerical facility from neighborhood | Alternative enhances property values in
heighborhood | Alternative provides
enhancements that
significently improve
neighborhood | No impact on land use or above ground facilities in all options | 0 | | npermeable
urfaces | 5 ecres+ of
impermeable surfaces
are added | 3 - 5 scres of impermeable
surfaces are edded | 1 - 3 scres of impermeable
surfaces are added | up to 1 acre of
impermeable surfaces are
added | Minor increase in
impermeable surfaces
added | No shange in impermeable surface | Minor reduction
in
impermeable surfaces | Up to 1 scre of impermeable surfaces removed | 1 - 3 acres of impermeable
surfaces removed | 3 - 5 acres of impermeable surfaces removed | More than 5 acres of
impermeable surfaces
removed | No change in impermeable surface in all options | 0 | | EEDS
erformance | NA | NA | NA | NA | NA | LEEDS not applicable or
LEEDS score <10 | LEEDS Score 10 - 25 | LEEDS Certified | LEEDS Saver | LEEDS Gold | LEEDS Pletinum | LEEDS not applicable or LEEDS acore < 10 in
all options | 0 | | get the total sco | ore for this alternat | | | | tive or negative, depend
tives that score in this | | | elue. (2.) Total the score | s for each aspect | | Total Raw Score | | 4 | | spect
on-Renewable
nergy | Rationale Eco-triendly solutions w | 3 3 3 3 4 5 5 6 7 5 7 7 7 8 9 7 7 8 9 7 7 8 9 7 7 8 9 7 8 9 7 8 9 7 8 8 9 7 8 8 9 7 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 8 9 8 8 8 9 8 8 8 9 8 8 8 9 8 8 8 9 8 8 8 9 8 8 8 8 9 8 8 8 8 8 9 8 | | | | Measurement Method Evaluation of primary energy consumed per MG of flow treated, compared to the energy consumed at the WCWTP oer MG treated. | | | Note: The total score calculated may be more than 25. In the instances where this might occur, a demandance of 25 will be calculated. | | | | | | onsumption
se of Natural
ystems | Nebral systems replace concrets and steel construction with wel bottom storage ingoons, constructed biosweles, rain gardens etc. that increase green space of various kinds. Options that reduce wellands and green space get penulty points. | | | | | Acres of wellands and other types of green space created or eliminated. Also includes subjective evaluation of the "basis" of the alternative - "green" or "grey". | | | | | | | | | ultiple-Use
acilties | Eco-friendly solutions create recreational opportunities for both water-based and riparien recreation. Bosting, canoing, kayeking, fishing, waiting, swimming etc. would be direct water-based recreation. But watching, hiking, piking, picking, camping etc. would be considered related riparian recreation. | | | | | Subjective evaluation of changes predicted in the equatic or riparian environment as a
result of better water quality, increased base flow or decreased flow peaks, increased
tree cover or vegitated riparian sreas etc. | | | | | | | | | surce Control of
ibwatershed
illutant loads | Controlling politions loads at the source through behavior modification, product replacements or stormwater management BMPs that capture politions thereby avoiding and of pipe treatment requirements. | | | | | Modeled tand-side pollutant locating reductions as calculated by the BGC Water Quality Tool or by companision to Benefute values or pilot program measurements. | | | | | | | | | on-Obtrusive
onstruction
echniques | Probable construction impacts on traffic, noise and dust are all measures of the Biendliness of an alternative. Construction impacts get penalty points for creating numbering conditions. | | | | | Subjective evaluation of probable construction impacts based on the type of construction envisioned for the attenuative. | | | | | | | | | onsistent Land
se | Alternative configuration can either enhance or dethect from the surrounding property. For example, an autremely unifically pump station can be notey, arredy, and uply. The same pump station can be "disquised" as a residence that the right in with the neighborhood. If a larger parcel of land is available, a pump station can be libblen from view by fendscaping, and a community gention on other green space added to enhance the neighborhood. | | | | | At the planning level, projects can be defined to evoid negative impacts on the
surrounding properties. Depending on the availability of land, enhancements are
possible. This expect encourages project definition and bodgets to onhance, not
detact. | | | | | | | | | | Adding impermeable surfaces increases total runoff volume, peek runoff flowratee, and the futal transport of any pollutant deposited in the surface from any source. Conversely, permeable surfaces can reduce flow volume and peaks, and provide filtering mechanisms for pollutants. | | | | | Acres of permeable surfaces created or eliminated. | | | | | | | | | permeable
urfaces | Conversely, permeable | | | | | | | | | | | | | ## **Cluster Comparison** # Project #1: S_JT_JT_NB01_01_C_A (Alternative 1) ## Raw Benefit Score² | CSO/SSO ID | | Regulatory
Performance | Public Health | Asset
Protection | Environmental
Enhance | Eco-Friendly
Solutions | |---|----------------------|---------------------------|---------------|---------------------|--------------------------|---------------------------| | ISO28 | | 21 | 22 | 10 | 11 | 3 | | 28390 | | 5 | 7 | 10 | 11 | | | 31733 | | 21 | 20 | 10 | 11 | 3
3
3
3 | | 28395A | | 5 | 3 | 10 | 11 | 3 | | 64505 | | 5 | 3 | 10 | 11 | 3 | | MSD0255 | | 0 | 0 | 10 | 11 | 3 | | 28392 | | 0 | 0 | 10 | 11 | 3 | | 28391 | | 0 | 0 | 10 | 11 | 3 | | 28173 | | 0 | 0 | 10 | 11 | 3 | | 64096 | | 21 | 8 | 5 | 4 | -4 | | 86052 | | 21 | 22 | 5 | 4 | -4 | | 92061 | | 0 | 0 | 5 | 4 | -4 | | MSD0263 | | 21 | 18 | 5 | 4 | -4 | | Weighting Factor Weighted Benefit Score | | 8
960 | 10
1030 | 6
660 | 8
920 | 6
66 | | Total Benefit Score | 3636 | | | | | | | Total Capital Cost ³ | 24831000 | | | | | 1 | | Total Present Worth Costs ³ | 0 | | | | | | | Weighted Benefit/Cost Ratio (Capital Costs) Weighted Benefit/Cost Ratio (Total Present Worth Costs) | 14.642987
#DIV/0! | | | | | | #### Notes: - 1. Data Input Cells are highlighted in yellow - 2. Raw Benefit Scores for Regulatory Performance and Public Health values are from the CSO or SSO Level of Control Benefit Sheets - 3. Capital and Total Present Worth Costs from the "Proj Summary" Page of the Cost Model for the clustered alternative | 2-Year | | | Jeffe | erson | town | Blendi | ng Elimir | nation Plan - Original IOAP, Alt | ternatives 1, | 2, 3 (all the s | ame) | |-------------------------|----------|---------|--------|--------|--------|---------|---|--|--|-----------------|-----------| | Value: | Regulate | ory Pe | | | | | | | | | | | | Measure | Ti-lie | In | npact | / Fred | uency | | Rationale | Meas | urement Met | nod | | Performanc
e Measure | | 6 month | 1 Year | 2 Year | 5 Year | 10 Year | Modeled
Overflow
Point or No
discharge | Regulations do not distinguish between potential impact of SSOs, therefore frequency and impact are the same for Regulatory Performance value Modeled Overflow Points are not considered until verified. | Measurement method quantify the SSO disc | | models to | | | Value | 25 | 12 | 0 | 4 | 1 | 0 | | | | | | | ISO28 | BL | | | PR | | mark Til | | 25 | 4 | 21 | 28173 Note - This value sheet calculates the total benefit. Acronyms Frequency AAOV - Average annual overflow volume CSO - Combined sewer overflow 28390 31733 28395A 64505 MSD0255 28392 28391 BL WQS - Water quality standards WWTPs - Wastewater treatment plants BL BL BL PR PR PR PR BL BL BL BL Subtotal 4 4 4 4 0 0 0 0 9 25 9 9 0 0 0 0 57 5 21 5 5 | | Measure | | In | npact | / Freq | uency | | Rationale | Meas | urement Met | hod | |-------------------------|---------|---------|--------|--------|--------|---------|---
---|---|-------------------------|-----| | Performanc
e Measure | SSOs | 6 month | 1 Year | 2 Year | | 10 Year | Modeled
Overflow
Point or No
discharge | Regulations do not distinguish between potential impact of SSOs, therefore frequency and impact are the same for Regulatory Performance value. Modeled Overflow Points are not considered until verified. | Measurement method quantify the SSO disci | s will be via hydraulie | | | ncy | Value | 25 | 16 | 9 | 4 | 1 | 0 | 3- 10-10 To | | | | | | 64096 | BL | | | PR | | | | 25 | 4 | 21 | | ne | 86052 | BL | | | PR | | | | 25 | 4 | 21 | | Freq | 92061 | | | | | | BL | | 0 | 0 | 0 | | - | MSD0263 | BL | | | PR | | | | 25 | 4 | 21 | | Value: | Public Hea | alth Enhar | ncement - | SSOs | | | | | | | | |-------------------------|--|--|--|------------------------------------|----------------------------------|------------------------------------|--------------|---|------|------------------------------------|--------| | | Measure | | | Release | e Impact | | , | Rationale | Meas | urement | Method | | Performance
Measures | SSOs | Basement
Flooding
or
Park or Blue-
Line Stream >
50,000 Gals
or
>200,000 Gals | Residential
Area > 50,000
Gals
or
Park or Blue
Line <50,000
Gals
or
> 100,000 Gals | Release
50,000 -
99,999 Gais | Release
20,000-49,999
Gals | Release
10,000 -
19,999 Gals | No discharge | Not all discharges violate the Clean Water Act. Discharges vary in the impact to public health and the environment. Therefore, EPA developed guidance on how to set priorities based on the risk to the public's health and the environment under their Enforce | | SO discharge as
distance from (| | | 75 | 6 Month | 25 | 20 | 15 | 10 | 5 | 0 | Releases 900,000 gallons | 25 | 0 | 25 | | Frequency | 1 Year | 20 | 16 | 12 | 8 | 4 | 0 | Releases 2,000,000 gallons | 20 | 0 | 20 | | nt. | 2 Year | 15 | 12 | 9 | 6 | 3 | 0 | Releases 3,080,000 gallons | 15 | 0 | 15 | | 9 | 5 Year | 10 | 8 | 6 | 4 | 2 | 0 | Releases 4,600,000 gallons | 10 | 6 | 4 | | ш | 10 Year | 5 | 4 | 3 | 2 | 1 | 0 | Releases 5,720,000 gallons | 5 | 4 | 1 | | aximum score of | heet calculates the ave | rage benefit over t | he recurrence inte | rvals. A correcti | ion calculation is i | ncluded in order | to obtain a | Average Total S | core | | 13 | | FC - Fecal colife | d sewer overflow
orm
ic information system | | | | | | | Corrected Sco | re | | 22 | | Value: | Public Hea | alth Enhar | ncement - | SSOs | | | | | | | | |--|--------------------------|--|--|------------------------------------|----------------------------------|------------------------------------|-----------------|---|-------------------|-----------------------------------|--| | | Measure | | | Release | e Impact | | | Rationale | Mea | surement | Method | | Performance
Measures | SSOs | Basement
Flooding
or
Park or Blue-
Line Stream >
50,000 Gals
or
>200,000 Gals | Residential
Area > 50,000
Gals
or
Park or Blue
Line <50,000
Gals
or
> 100,000 Gals | Release
50,000 -
99,999 Gals | Release
20,000-49,999
Gals | Release
10,000 -
19,999 Gals | No discharge | Not all discharges violate the Clean Water Act. Discharges vary in the impact to public health and the environment. Therefore, EPA developed guidance on how to set priorities based on the risk to the public's health and the environment under their Enforce | to quantify the S | SSO discharge are distance from o | ia hydraulic mode
nd the GIS to
designated | | > | 6 Month | 25 | 20 | 15 | 10 | 5 | 0 | No Discharge | 0 | 0 | 0 | | Frequency | 1 Year | 20 | 16 | 12 | 8 | 4 | 0 | No Discharge | 0 | 0 | 0 | | ž | 2 Year | 15 | 12 | 9 | 6 | 3 | 0 | Releases 63,000 gallons | 12 | 0 | 12 | | J. | 5 Year | 10 | 8 | 6 | 4 | 2 | 0 | Releases 167,000 gallons | 8 | 2 | 6 | | ш | 10 Year | 5 | 4 | 3 | 2 | 1 | 0 | Releases 248,000 gallons | 5 | 2 | 3 | | ote - This value s | heet calculates the aver | rage benefit over t | he recurrence inte | rvals. A correcti | ion calculation is i | ncluded in order | to obtain a | Average Total S | core | | 4 | | Acronyms
CSO - Combine
FC - Fecal colife | d sewer overflow | | | | | | Corrected Score | | | 7 | | 10 Year Note - This value sheet calculates the average benefit over the recurrence intervals. A correction calculation is included in order to obtain a maximum score of 25. Acronyms CSO - Combined sewer overflow FC - Feacl coll | 31733 - 2 | YR | Jefferso | ntown Ble | ending E | limination | Plan - C | riginal IC | OAP, Alternatives 1, 2, 3 (all | the same | | | |---------------------------|------------|--|----------------------|------------------------------------|----------------------------------|------------------------------------|--------------|--|-----------------|-------------------------------------|--| | Value: | Public Hea | | | | | | | | | | | | | Measure | | | Releas | e Impact | | | Rationale | Mea | surement | Method | | Performance
y Measures | SSOs | Basement
Flooding
or
Park or Blue-
Line Stream >
50,000 Gals
or
>200,000 Gals | Line <50,000
Gals | Release
50,000 -
99,999 Gals | Release
20,000-49,999
Gals | Release
10,000 -
19,999 Gals | No discharge | Not all discharges violate the Clean Water Act. Discharges vary in the impact to public health and the environment. Therefore, EPA develope guidance on how to set priorities based on the risk to the public's health and the environment under their Enforce | to quantify the | SSO discharge a
re distance from | via hydraulic mode
and the GIS to
designated | | > | 6 Month | 25 | 20 | 15 | 10 | 5 | 0 | Releases 80,000 gallons | 20 | 0 | 20 | | ů, | 1 Year | 20 | 16 | 12 | 8 | 4 | 0 | Releases 172,000 gallons | 16 | 0 | 16 | | an t | 2 Year | 15 | 12 | 9 | 6 | 3 | 0 | Releases 269,000 gallons | 15 | 0 | 15 | | Je C | 5 Year | 10 | 8 | 6 | 4 | 2 | 0 | Releases 393,000 gallons | 10 | 2 | 8 | | LL. | 10 Year | 5 | 4 | 3 | 2 | 1 | 0 | Releases 495 000 gallons | 5 | 2 | 3 | Releases 495,000 gallons Average Total Score Corrected Score 2 3 12 | alue: | Public Hea | alth Enhar | ncement - | SSOs | | | | | | | | |-------------------------|-------------------------|--
--|------------------------------------|----------------------------------|------------------------------------|--------------|---|------|-----------------------------------|--------| | | Measure | | | Release | e Impact | | | Rationale | Mea | surement | Method | | Performance
Measures | SSOs | Basement
Flooding
or
Park or Blue-
Line Stream >
50,000 Gals
or
>200,000 Gals | Residential Area > 50,000 Gals or Park or Blue Line <50,000 Gals or > 100,000 Gals | Release
50,000 -
99,999 Gals | Release
20,000-49,999
Gals | Release
10,000 -
19,999 Gals | No discharge | Not all discharges violate the Clean Water Act. Discharges vary in the impact to public health and the environment. Therefore, EPA developed guidance on how to set priorities based on the risk to the public's health and the environment under their Enforce | | SO discharge a
e distance from | | | > | 6 Month | 25 | 20 | 15 | 10 | 5 | 0 | No Discharge | 0 | 0 | 0 | | Frequency | 1 Year | 20 | 16 | 12 | 8 | 4 | 0 | No Discharge | 0 | 0 | 0 | | 2 | 2 Year | 15 | 12 | 9 | 6 | 3 | 0 | Releases 2,000 gallons | 3 | 0 | 3 | | ē | 5 Year | 10 | 8 | 6 | 4 | 2 | 0 | Releases 31,000 gallons | 4 | 0 | 4 | | ш | 10 Year | 5 | 4 | 3 | 2 | 1 | 0 | Releases 46,000 gallons | 2 | 1 | 1 | | dmum score of | heet calculates the ave | rage benefit over t | he recurrence inte | rvals. A correcti | ion calculation is I | ncluded in order | to obtain a | Average Total S | core | | 2 | | FC - Fecal colife | d sewer overflow | | | | | | | Corrected Sco | re | | 3 | | /alue: | Public Hea | alth Enhar | ncement - | SSOs | | | | | | | | |--|--------------------------|--|--|------------------------------------|----------------------------------|------------------------------------|-----------------|---|-------------------|--------------------------------------|--------| | | Measure | | | Release | e Impact | | | Rationale | Mea | surement I | Method | | Performance
Measures | SSOs | Basement
Flooding
or
Park or Blue-
Line Stream >
50,000 Gals
or
>200,000 Gals | Residential
Area > 50,000
Gals
or
Park or Blue
Line <50,000
Gals
or
> 100,000 Gals | Release
50,000 -
99,999 Gals | Release
20,000-49,999
Gals | Release
10,000 -
19,999 Gals | No discharge | Not all discharges violate the Clean Water Act. Discharges vary in the impact to public health and the environment. Therefore, EPA developed guidance on how to set priorities based on the risk to the public's health and the environment under their Enforce | to quantify the S | SO discharge an
e distance from d | | | > | 6 Month | 25 | 20 | 15 | 10 | 5 | 0 | No Discharge | 0 | 0 | 0 | | Frequency | 1 Year | 20 | 16 | 12 | 8 | 4 | 0 | No Discharge | 0 | 0 | 0 | | ž | 2 Year | 15 | 12 | 9 | 6 | 3 | 0 | Releases 13,600 gallons | 3 | 0 | 3 | | ē | 5 Year | 10 | 8 | 6 | 4 | 2 | 0 | Releases 170,000 gallons | 8 | 2 | 6 | | ш | 10 Year | 5 | 4 | 3 | 2 | 1 | 0 | Releases 282,000 gallons | 5 | 2 | 3 | | ote - This value s | theet calculates the ave | rage benefit over t | he recurrence inte | rvals. A correct | ion calculation is | ncluded in order | to obtain a | Average Total S | core | | 2 | | Acronyms
CSO - Combine
FC - Fecal collid | ed sewer overflow | | | | | | Corrected Score | | | 3 | | | Value: | Public Hea | alth Enhar | ncement - | SSOs | | | | | | | | |-------------------------|-------------------------|--|--|------------------------------------|----------------------------------|------------------------------------|--------------|--|------|-----------------------------------|--------| | | Measure | | | Release | e Impact | | | Rationale | Meas | surement | Method | | Performance
Measures | SSOs | Basement
Flooding
or
Park or Blue-
Line Stream >
50,000 Gals
or
>200,000 Gals | Residential
Area > 50,000
Gals
or
Park or Blue
Line <50,000
Gals
or
> 100,000 Gals | Release
50,000 -
99,999 Gals | Release
20,000-49,999
Gals | Release
10,000 -
19,999 Gals | No discharge | Not all discharges violate the Clean Water Act.
Discharges vary in the impact to public health
and the environment. Therefore, EPA developed
guidance on how to set priorities based on the
risk to the public's health and the environment
under their Enforce | | SO discharge a
e distance from | | | 7: | 6 Month | 25 | 20 | 15 | 10 | 5 | 0 | Releases 600 gallons | 5 | 0 | 5 | | Frequency | 1 Year | 20 | 16 | 12 | 8 | 4 | 0 | Releases 16,000 gallons | 4 | 0 | 4 | | ä | 2 Year | 15 | 12 | 9 | 6 | 3 | 0 | Releases 55,000 gallons | 12 | 0 | 12 | | ě | 5 Year | 10 | 8 | 6 | 4 | 2 | 0 | Releases 123,000 gallons | 8 | 4 | 4 | | ш | 10 Year | 5 | 4 | 3 | 2 | 1 | 0 | Releases 160,000 gallons | 4 | 3 | 1 | | ite - This value s | heet calculates the ave | rage benefit over t | he recurrence inte | rvals. A correcti | on calculation is i | ncluded in order | to obtain a | Average Total So | core | | 5 | | FC - Fecal colife | d sewer overflow | | | | | | | Corrected Sco | re | | 8 | | /alue: | Public Hea | alth Enhar | ncement - | SSOs | | | | | | | | |-------------------------|--------------------------------------|--|--|------------------------------------|----------------------------------|------------------------------------|-----------------|--|-------------------|--|--------| | | Measure | | , | Release | Impact | | | Rationale | Mea | surement | Method | | Performance
Measures | SSOs | Basement
Flooding
or
Park or Blue-
Line Stream >
50,000 Gals
or
>200,000 Gals | Residential
Area > 50,000
Gals
or
Park or Blue
Line <50,000
Gals
or
> 100,000 Gals | Release
50,000 -
99,999 Gals | Release
20,000-49,999
Gals | Release
10,000 -
19,999 Gals | No discharge | Not all discharges violate the Clean Water Act.
Discharges vary in the impact to public health
and the environment. Therefore, EPA developed
guidance on how to set priorities based on the
risk to the public's health and the environment
under their Enforce | to quantify the S | SSO discharge are
e distance from o | | | > | 6 Month | 25 | 20 | 15 | 10 | 5 | 0 | Releases 155,000 gallons | 20 | 0 | 20 | | Frequency | 1 Year | 20 | 16 | 12 | 8 | 4 | 0 | Releases 223,000 gallons | 20 | 0 | 20 | | and the | 2 Year | 15 | 12 | 9 | 6 | 3 | 0 | Releases 292,000 gallons | 15 | 0 | 15 | | ē | 5 Year | 10 | 8 | 6 | 4 | 2 | 0 | Releases 360,000 gallons | 10 | 2 | 8 | | ш | 10 Year | 5 | 4 | 3 | 2 | 1 | 0 | Releases 405,000 gallons | 5 | 2 | 3 | | ximum scare of | theet calculates the aver | rage benefit over t | he recurrence inte | rvals. A correction | on calculation is i | to obtain a | A. T. A. I.C. | | | 13 | | | FC - Fecal colife | orm
orm
oic information system | | | | | | Corrected Score | | | 22 | | | Value: | Public Hea | alth Enhar | ncement - | SSOs | | | | | | | | |--|-------------------------|--|--|------------------------------------|----------------------------------|------------------------------------|-----------------|---|------|------------------------------|--| | | Measure | | | Release | e Impact | | | Rationale | Mea | surement | Method | | Performance
Measures | SSOs | Basement
Flooding
or
Park or Blue-
Line Stream >
50,000 Gals
or
>200,000 Gals | Residential
Area > 50,000
Gals
or
Park or Blue
Line <50,000
Gals
or
> 100,000 Gals | Release
50,000 -
99,999 Gals | Release
20,000-49,999
Gals | Release
19,000 -
19,999 Gals | No discharge | Not all
discharges violate the Clean Water Act. Discharges vary in the impact to public health and the environment. Therefore, EPA developed guidance on how to set priorities based on the risk to the public's health and the environment under their Enforce | | SO discharge a distance from | ia hydraulic mode
nd the GIS to
designated | | > | 6 Month | 25 | 20 | 15 | 10 | 5 | 0 | Releases 36,000 gallons | 20 | 0 | 20 | | Frequency | 1 Year | 20 | 16 | 12 | 8 | 4 | 0 | Releases 71,000 gallons | 16 | 0 | 16 | | n n | 2 Year | 15 | 12 | 9 | 6 | 3 | 0 | Releases 123,000 gallons | 12 | 0 | 12 | | 5 | 5 Year | 10 | 8 | 6 | 4 | 2 | 0 | Releases 204,000 gallons | 10 | 4 | 6 | | ш | 10 Year | 5 | 4 | 3 | 2 | 1 | 0 | Releases 274,000 gallons | 5 | 2 | 3 | | ote - This value s | heet calculates the ave | rage benefit over t | he recurrence inte | rvals. A correct | ion calculation is i | ncluded in order | to obtain a | Average Total S | core | | 11 | | Acronyms
CSO - Combine
FC - Fecal colife | ed sewer overflow | | | | | | Corrected Score | | | 18 | | | /alue: | Public Hea | alth Enhar | ncement - | SSOs | | | | | | | | |---|--------------------------|--|--|------------------------------------|----------------------------------|------------------------------------|-----------------|--|-------------------|---------------------------------------|---| | | Measure | | | Release | e Impact | | | Rationale | Mea | surement | Method | | Performance
Measures | SSOs | Basement
Flooding
or
Park or Blue-
Line Stream >
50,000 Gals
or
>200,000 Gals | Residential
Area > 50,000
Gals
or
Park or Blue
Line <50,000
Gals
or
> 100,000 Gals | Release
50,000 -
99,999 Gals | Release
20,000-49,999
Gals | Release
10,000 -
19,999 Gals | No discharge | Not all discharges violate the Clean Water Act.
Discharges vary in the impact to public health
and the environment. Therefore, EPA developed
guidance on how to set priorities based on the
risk to the public's health and the environment
under their Enforce | to quantify the S | SSO discharge ar
e distance from o | ia hydraulic model
nd the GIS to
designated | | > | 6 Month | 25 | 20 | 15 | 10 | 5 | 0 | No Release | 0 | 0 | 0 | | Frequency | 1 Year | 20 | 16 | 12 | 8 | 4 | 0 | No Release | 0 | 0 | 0 | | and the | 2 Year | 15 | 12 | 9 | 6 | 3 | 0 | No Release | 0 | 0 | 0 | | ě | 5 Year | 10 | 8 | 6 | 4 | 2 | 0 | No Release | 0 | 0 | 0 | | u. | 10 Year | 5 | 4 | 3 | 2 | 1 | 0 | No Release | 0 | 0 | 0 | | te - This value si | heet calculates the aver | rage benefit over t | he recurrence inte | rvals. A correct | on calculation is i | ncluded in order | to obtain a | Average Total So | core | | 0 | | Acronyms CSO - Combine FC - Fecal colifo GIS - Geograph | | | | | | | Corrected Score | | 0 | | | | alue: | Asset Pro | otection | | | | | | | | Solution and Alterantives 1, | -, (| o danio, | | |----------------------|--------------|---------------------|-------------|--|---|--|---|---|--|---|---|--|----------------------------------| | | | Measure | | | | Im | pact | | | Rationale | Mos | surement Metho | d | | | | Flood | Damage | Homes or
businesses are
subject to severe
structural damage | Homes or
businesses are
subject to minor
to moderate
structural damage | Flooding limits
access to
homes or
businesses | Flooding limits
access to
recreational
areas | Standing water
on property, but
access not
affected and no
damage
expected | No standing water | Stormwater BMPs can reduce stormwater peaks and reduce extent of flooded areas, while sewer separation may increase localized stormwater peak flows and increase the flooding impacts of storms. Alternatively, purchase of highly impacted properties may be a cheaper way to reduce flood damage and create green space and buffer zones. | Drainage models where a
Customer Information Sy
areas combined with the | ivailable, historic customer o
stem, or historic observation
expected relative impacts o | complaints from M | | Performance Measures | | Basemen | it Back-ups | Sewer
surcharging
within 6 feet of
ground surface
for more than
20% of manholes | Sewer
surcharging
within 6 feet of
ground surface
for 10 - 20% of
manholes | Sewer
surcharging
within 5 feet of
ground surface
for 5 - 10% of
manholes | Sewer
surcharging
within 6 feet of
ground surface
for 1 - 5% of
manholes | Sewer
surcharging
within 6 feet of
ground surface
for 0 - 1% of
manholes | No surcharging
within 6 feet of
ground surface | First floor levels are typically 1 - 2 leet above ground surface, and basement floor are typically 8 - 10 feet below the first floor. A sewer surcharge of 6 feet below ground surface is highly likely to cause back-ups in homes with basement service. | Measurement methods w
hydraulic grade lines com | ill be via hydraulic models h
pared to ground surface ele | o quantify the vations at manhok | | Performano | Storm Events | | - | Most Severe
Impact | | | | Least Impact | No Impact | | | | | | ď | | + | | 5 | 4 | 3 | 2 | 1 | 0 | Assumptions | Base Case Score | Alternative Score | Total Score | | | 6 Month | Most | 5 | 25 | 20 | 15 | . 10 | 5 | 0 | | 10 | 0 | 10 | | 100 | 1 Year | | 4 | 20 | 16 | 12 | 8 | 4 | 0 | | 12 | 4 | 8 | | Frequency | 2 Year | | 3 | 15 | 12 | 9 | 6 | 3 | 0 | | 9 | 3 | 6 | | Freq | 5 Year | | 2 | 10 | 8 | 6 | 4 | 2 | 0 | | 8 | 4 | 4 | | | 10 Year | Least | 1 | 5 | 4 | 3 | 2 | 1 | 0 | | 5 | 3 | 2 | | | Not Possible | Not
Poss
ible | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Average | Total Score | | 6 | | | ject #1 | | | | | | | S_JT_ | JT_NB01A_0 | 3_C | | | | |----------------------|------------------------|---------------------|------------------|--|---|--|---|---|--|---|---|--|-------------------| | alue: | Asset Pro | otection | | | | | | | | | | | | | | | Measure | | | | Im | pact | | | Rationale | Mea | surement Metho | d | | | | Flood | Damage | Homes or
businesses are
subject to severe
structural damage | Homes or
businesses are
subject to minor
to moderate
structural damage | Flooding limits
access to
homes or
businesses | Flooding limits access to recreational areas | Standing water
on property, but
access not
affected and no
damage
expected | No standing water | Stormwater BMPs can reduce stormwater
peaks and reduce extent of flooded areas,
while sewer separation may increase
localized stormwater peak flows and
increase the flooding impacts of storms.
Alternatively, purchase of highly impacted
properties may be a cheaper way to reduce
flood damage and create green space and
buffer zones. | Customer Information Syl
areas combined with the | vallable, historic customer c
stem, or historic observation
expected relative impacts o
ster flows. | ns of flood-prone | | Performance Measures | | Basemen | it Back-ups | Sewer
surcharging
within 6 feet of
ground surface
for more than
20% of manholes | Sewer
surcharging
within 6 feet of
ground surface
for 10 - 20% of
manholes | Sewer
surcharging
within 6 feet of
ground surface
for 5 - 10% of
manholes | Sewer
surcharging
within 6 feet of
ground surface
for 1 - 5% of
manholes |
Sewer
surcharging
within 6 feet of
ground surface
for 0 - 1% of
manholes | No surcharging
within 6 feet of
ground surface | First floor levels are typically 1 - 2 feet above ground surface, and basement floors are typically. 8 - 10 feet below the first floor. A sewer surcharge of 6 feet below ground surface is highly likely to cause back-ups in homes with basement service. | Measurement methods w
hydraulic grade lines comp | | | | forman | Storm Events | 1 | • | Most Severe
Impact | | | | Least Impact | No Impact | | | | | | Per | | ļ | | 5 | 4 | 3 | 2 | 1 | 0 | Assumptions | Base Case Score | Alternative Score | Total Score | | | 6 Month | Most | 5 | 25 | 20 | 15 | 10 | 5 | 0 | | 5 | 0 | 5 | | | 1 Year | | 4 | 20 | 16 | 12 | 8 | 4 | 0 | | 4 | 4 | 0 | | Frequency | 2 Year | | 3 | 15 | 12 | 9 | 6 | 3 | 0 | | 9 | 3 | 6 | | Freq | 5 Year | | 2 | 10 | 8 | 6 | 4 | 2 | 0 | 124 | 8 | 6 | 2 | | | 10 Year | Least | 1 | 5 | 4 | 3 | 2 | 1 | 0 | | 4 | 3 | 1 | | | Not Possible | Not
Poss
ible | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Avera | age Score | | 3 | | - This value s | sheet calculates the a | verage benefit o | over the recurre | nce intervals. A corre | ction calculation is in | cluded in order to o | btain a maximum so | ore of 25. | | Corre | cted Score | | 5 | | | | | | | | Jefferso | ntown B | lending | Eliminati | on - Alteri | native 1 | | | |---|--|--|--|--|--|--|--|--|---|---|--|---|-------------------| | Value: | Environmental 8 | nhancement | THE REAL PROPERTY. | | | | | | | | | | | | Aspect | -5 | -4 | 3 | 2 | -1 | 0 | So | oring | | | | Assumptions | Score Per Aspe | | Aquatic and
Terestrial Habitat
Protection | Eliminature of habital for race of
erulangered species | Elimenation of argreficent
anticast of common habitat | Simination of miner amount of common baddet | Significant habital imparament | Mirror imperament to extering trabital | | Move annexement of
emelog natital | Significant enhancement of
emistrig habitet | Creation of manage amount of
common habited | Creation of aignificant amount of common habitat | Creation of ortical hands for
rare or endangered species | Place allowables restores Chargersh Res to interrobed agreen habitat, its nature | 3 Score Per Aspe | | Aesthetics - Solids
and Floatables | 77%- reduction in voticine of
Time with no SSF papeurs | 30 - 75% all flow with ris S&F
(simplyal) | 25 - 50% of flow with no Sal
(emissal | 10 - 25% of time with no SAF
(emissed | Radices afficiency of easter
56F control device, 0 - 10%
of few with no 56F removal | Oto change in SSF removal | 6 - 10% of decharged few
beater with positive SAF
(emovel (ocreans) | IC-25 % of discretized for
beared with positive SAF
removal (accesse) | 25 - 50% of discharged flow
treated with positive DAF
removal (accreens) | 50 - 75% of discharged fine
treated with positive SAF
removal screens | 75% + of decharged flow
Vested with positive SAF
removal (screens) | No setions will provide changes in S&F Removes | 0 | | Aasthetica - Odor
and Air Emissions | Create annoying oder source effecting # 20 outlemes often | Creeta anoxioni pider source
effecting 120 customers offer
or 120 customers occasionet | Drefit stranging later source
affecting 430 crasses as
acceptionally | Create stelectable able source
affecting + 50 customers often | Create desecutive aday
source affecting + 50
customers accessmely | No regact on orders | Elements describing other
assures effecting 4 50
continues recasionally | (Simmate detectable silve
source effecting + 50
customers often | Element energing ode source
effecting +20 commerce
occessorally | Co Strengt erroying othe source
affecting 420 sourcement offers
or 420 customers excessionally | Eliminate annuying odor
source effecting +20
maisoners often | Other will be administed from all overflows along John triverspiler being elemented.
Treatment Plant solves witnessed accept for more obrega and gump station polential. | . 3 | | Diasolved Oxygen
Impacts | Heaterier of in drawn DO by 2 ergel - during critical fine paried | Continuous reduction of in-
scream DD of 2 right + | Continuous reduction of an
attended to 3 - 2 mgs,
prosides reduction of an
attended to 4 mgs during
critical conditions. | Intermittent instruction of in
attem DO 2 regit + presents
sharing
non-critical candidates.
Instruction of DO 0 - 2 regit states
without candidates. | transmittent (extluction of se
street DO 0 - 2 mg/ possible
starrag non-critical considerate | No CO engrace | Information topp overcome or extension DO 5 - 2 right | internations expressions of in-observations (20 graph - electrosters) colored coulders or a constant of the colored coulders (20 graph - 20 gra | Continuous ingressment of a
examp DC 0 - 2 reg t
references order orders
more water 5-4 reg t | Conditions expressment of ex- | Gentinuous argoniument of critical consister in at earn D 2 mg/s | Place officers track detroaction will provide improvement of in operant DO 0 - 2 mg/L Dut
extracts may dry up in automate. | (*) | | Downstream
Impacts | Title- pursue in social SOD or material sols | 30 - 75% increase in encod.
SCID or representations | 25 - 50% increase in arrival
9000 or number licease | 10 - 25% increase et minual
600 er nutrieri kaute (CSO -
runsif) | Potential 0 - 10 % increase in
ennual average BOD or
hulters loads (CBO + nunef) | No impact on BOD or native
seeds (CBO - naneff) | 0 - 13% reduction in annual
SCO or nutrient trade (CSO
- nuncify | 10 - 25% reduction in service
8000 or nutrient made (CEX
+ nutrief) | 25 - 50% reduction in around
800 or traitien hads (CSO -
hand) | 50 - 75% reduction in annual
BOD or hydrent leads (CBO -
nuncit) | 75% reduction in service
800 or human hada (CBO
numb) | triproved regions and teatment of SSCs will provide G : 10 % reduction in sensel
GCO or nutrient trasts (SSO + nutriel) downstream of Jefferbon County | 1 | | Stream Flow
Impacts (Peak
flows) | 29% - PORMA ROSER ROSE | 10% - 25% Parreless in peak
Boos | Up to 10% increase in pess
fines | Frequent increase in flow dutin
critical conditions | Possible recrease in everyge
fire or meas increase in high
fire peaks | his impact or year. Sows | Minor restaction in time - n
arguitcom posit restaction | Non-reduction to peak
flows under some condition | Up to 10% reduction in page. | (Ons - 25hs) eduction in peak
Sires | 25"ur vertucitori in peet fine | Fine peaks in he restured due in diversion of plant efficient. | 3 | | Stream Flow
Impacts (DWF only) | 25"s- decrease in flow during
collicial conditions. | 13% - 25% decrease in fine
during critical conditions | 0-10% permanent decrease
in fine during critical
conditions | Frequent decrease in few darks
orlical conditions | Fossible decrease in everage
flow | File érgiact on average or
érese straum Nov | Insertations increase in
street few rest freet to
other conditions | Internitions occupie in
stream fine - often improve
ordical conditions | 0 - 10% partnered increase i
s stream flow during critical
conditions | In attent from during order conditions. In attent from during order conditions from during order conditions. Description and register reports between an authorized conditions. | | | 0 | | Tream Flow 29%- Screen in Nov dump product (DVR) only) officer conducts. (L) Some seath all transfers for each of \$150 and a | | | | | | | | ** | | | | | | | Aspect | Rationale | | | | | | Measurement N | Method | | | 1 | otal Score (Default) | 11 | | Aquatic and
Terestrial Hebitat
Protection | shape and characteristics | etc. Predictive models | used to evaluate wet we | h changes in base flow, pe
eather control measures hi
wate future positive and ne | ve a limited ability to ore | ee cover, channel
dict biological diversity | and configuration, tree
and other water quality | cover etc. Predictive
y impects. Flow models | anges in channel shape
models will address DO
s will predict base flow
inges in erosion and wate | Note: The total score c | alculated may be more | than 25. In the instances where this might occur, a default maxis | mum score of 25 w | | Aesthetics - Solids
and Floatables | | | | overments in capture rates of and other control systems
y, penalty points will be ass | | | all sites with control to
will be estimated for all
advanced treatment to | schnology, Improvement
I alternatives that add a
schnologies. Where tre | | | | | | | leathetics - Odor
and Air Emissions | Odors and air emissions by both the intensity and throm sewage handling fac | he quality of the oxfor. De | ige systems, pump stati
electable and annoying | ons, force mains, and long
are two common descripto | flat severs. Odors are
s of different intensities | generally characterized
and qualities of odors | intensity, quality, and g
level of evaluation is neare circumstances. To
estimated based on by | sewage handling fecilitis
geographic spread. For
of common, and will no
the potential for odor an
pical applications and n
of events, average flow | planning purposes this
the done except in very
d air emissions will be
sodel predictions for | | | | | | Rissolved Oxygen
Impacts | Dissolved oxygen in stree | rrs is dependent on a val | riety of factors including | BOD load, nutrient load, a | ream flow velocity, water | r temperature, étc. | of various leading con- | rojects will be estimated | ires, etc. Probable | | | | | | lownstream
mpacts | Downstream impacts refer
been identified as the sour
to get to the Gulf, but can i | ce of 30 - 45% of the total | al nutrient loads reaching | County, Nutrient loadings is
g the Gulf of Mercico, BOD | the Chio (not just Jeffer
is not likely to persist in | rson County) have
the river long enough | Pollutant removals will
average loads, since the
and cumulative. | be estimated based on
he downstream impacts | reductions in annual
are primarily long-term | | | | | | itream Flow
npacts (Fleak
owe) | Extremently high peak flow
make water based recreat | rs as are offen caused by
ion unsafe or impractical | r urbanization of a water | shed can erode the stream | ibed, damage aquatic an | nd lerrestriel habitat. | sources, and the Wate | estimate flow peaking f
r Quality Tool has a hyd
during various storm ev | fraulic component to | | | | | | tream Flow | Diversion of flows ewey fro
measures such as ground | m a stream due to abend
water pumping can increa | dominent of a beatment ;
sae base flows with benu | plant etc. can reduce base
eficial results. | ferms in a stream. Altern | netively, other control | Predictive models can
Water Quality Tool has
flows during various dr | s hydraulic component | hidual sources, and the
to estimate stream | | | | | | cronyma
GC - Beargrass Cree
OD - Biological sayge
SO - Combined sawe | en demand | | DO - Dissolved sxygen
DWF - Dry weather flow
ngft - Milligram per liter | | S&F - Solids and floatable | es | | | | 1 | | | | | Pro | oject #1 | | | | | | S | JT JT N | IB01A 03 | C | | - 47 17 17 18 | | |---|---|---|--|--|--|--|---|---
--|--|--|---|------------------------------| | Value: | Environmental I | Enhancement | | | | | | | | _ | | | | | Aspect | | 1 4 | - 4 | 1 4 | 1 1 | | Scr | oring | | | 1 | Assumptions | Score Per Asp | | Aquatic and
Ferestrial Habitet
Protection | | Services of algorithms
amount of common habitat | Obvination of money amount of continues trabilities | Significant natified improvement | Minor important to existing
habital | No interact on fullistat | Minor antencement of emiling habital | Significant entercement of
entering facilities | Creation of minor amount of
common habital | Creation of significant amount
of common teorital | Creation of critical habitat for
time or entergered species | Assumptions | Score Per Asp | | Nesthefics - Solids
and Floatables | 79% reductor, or votupe of
fine with no SRF coplure | 50 / 75% of Soul with no SEE
Immercial | 26 - 60% of Box with the 387
(40%) of | 10 - 25% of flow with no DEF | Reduces efficiency of easter
SAF control device, 0 - 10%
of fire with no SAF removal | o
No change in S&F removal | 0 - 10% of discharged from
Inseled with positive SAF
removal (occesse) | 10 - 25 % of discharged for
braned with positive S&F
removal (Screens) | 20 - 50% of decharged line
heated with positive (IAF
removal (SC mets.) | 50 - 75% of discharged few
trailed with positive (LEF
removal acreers | 75% - of decharged flow
Yested with positive S&F
removal (accesses) | | | | Aesthetics - Odor
and Air Emissions | Oracle arrhoying other source offsching = 20 customers offer | Create anaroging older transfer
affecting <20 customers often
ar >20 customers occasional | Order arraying oder source
effecting +20 customers
sections unity | Oracle delectable oder anutra
affecting + 50 outsenues often | Orana desectable oder
source affecting + 90
sustaining occasionally | No engant on release | Elemente desectable odor
enurce effecting + 50
customers rezestimely | Eliminate descrable scor
ecurce affecting + 50
maximum other | Characte arraying oder autor
affecting 420 continues
screeningly | Elizabilis serviving odor source
affecting 470 coatement other
or +30 husbanness occasionals | Dimensia annoying rater
source affecting +20
customers often | | | | Dissolved Oxygen
mpects | Deduction of in strains DO by regit 4 during striking lister paris | Continues reduction of in- | Continuous reduction of in-
alt wan DO of 5 - 2 raps,
president respection of in-
sit seen DO 2 - 4 raps studing
tribial conditions. | entermitteed reduction of in
all team DO 2 mgf + presides
during non-unifical conditions,
reduction of DO 0 - 2 mgf sturing
critical conditions. | Internetiant reduction of in
otherm DC 0 - 2 mg/t possible
during inon-critical conditions | t No DO Impachi | International Improvement of the Street DO 0 - 2 mgs | inierrottent sryrsverhent in
drukkeen DO 2 mg/ «,
internittent critical condition
regritements 0 / 2 mg/l | Curdinatus improvement of a
stream DO 3 - 2 ingli,
internition of fical carolities
injurities are a line of the
injurities are a line of the plant o | Commons approvement of in
street DO 2 right # | Continuous Ingravement of
Orlical condition in altern DO
2 right = | | | | ownstream
npacts | 75% no vega in arrust 500 or material teats | 50 - 75% increase is simuel
BOID or nutriant heats | 26 - 50% bycomin in arrest
BOD or restreet leads | 10 - 25% increase in arrusti
BCC or nutrient leads (CSC +
runsf) | Principal 0 - 10 % increase in
strough sverage 500 or
rudnient heads (CSO + runoff) | No impact on SCO or nutrier
teach (CSO = nutrief) | C - 10% reduction at annual
BOD or nutrient hads (CBC
+ nand) | 10 - 25% reduction in arread
8000 or nutrient kinds (CSC
+ nutrief) | 25 - 50°s reduction in annual
BOD or nutrient touch (CSO s
runoff) | 50 - 75% reduction in arread
800 or mathem leads (CSO +
runoff) | This reduction is arrived
800 or nutrient hads (CSO -
nutrieff) | | | | Bream Flow
mpacts (Peak
lows) | 29% - exchess in past files | 10% - 25% recrease in peak.
Noise | Up to 10% increases in past
from | Frequent recrease in fine during
critical considerse | Preside increase in preriging flow, or many increase in high flow peems. | Me impact on year flows | Minor reduction in fines - n
pignificant presi reduction | tions reduction in past. | Lip to 10% reduction in peek.
Nove | 10% - 25% reduction in past
from | 25% reduction in pask flows | | | | Stream Flow
mpacts (DWF only) | 25% decrease in few during professi conditions. | 10% - 25% decrease in flow
during critical conditions | O-10% permanent decreases
in Sew during critical
conditions | Frequent decrease in New Gains
orising conditions | Parable decrease in everyone
from | No impact on wverage or
trate of eart fine | inserretient increase to
stream fine - not timed to
ordical conditions | triumittant ricrease III
etresm flow - offen improve
school conditions | 0 - 10% permitners increases a
site on the staring critical
conditions | n 10 - 25 % parmenent increases
in stream time during critical
conditions | 25%- permenant norsass or
all sain flow fluring critical
conditions. | | | | netructions: (1.) So
otal score for this a | ore each alternative for
alternative in this value. | each of the seven aspe
(3.) Shaded area repres | ets of the value, Score
ents "fetal flow". Alter | s can be positive or neg
natives that score in this | ative, depending on the | e impact of the alternations. | etive on the value. (2.) | Total the acores for e | ach aspect to get the | | Total | Rew Score Calculated | | | Aspect | Rationale | | | | | | Measurement N | Inthad | | | | Corrected Score | | | Aquatic and
Escaptial Habitat
Protection | Wel weather projects me
shape and characteristic
changes, emison impact | ry affect both equalic and
a etc., Predictive models
a etc., so surrogate metric | ierrestriel habital throug
used to evaluate wet wi
as must be used to estin | th changes in hase flow, pe
eather control measures ha
rate future positive and ne | eak flow, water quality, tr
eve a firelled ability to pre
gative impacts. | ne cover, channel
dict biological diversity | and configuration, tree | v impacts. Flow models | models will eddress DO | Note: The total score of calculated. | alculated may be more | than 25. In the instances where this might occur, a d | rfault maximum score of 25 w | | Aesthetics - Solids
and Floetables | Most CSOs have some fi
advanced treatment option
well. White reduction is a | orm of solids and floatable
one. Storm water retention
colids and floatables remo | es control baffies, Impro
n, constructed wellands
val efficiency is not likel | overrents in capture rates of and other control systems
y, penalty points will be ass | cen be expected with sor
a may provide colids and
respect if this is possible | eening or other
Sostables removal as
with any alternative. | all sites with control to
will be estimated for a
edvanced treatment to | chnology, improvemer
I alternatives that add s
schoologies. Where the | oy has been estimated to
ds in removal efficiencies
oreening or other
atment is proposed for
nated based on published | | | | | | wathetics - Odor
nd Air Emissions | Odors and air emissions
by both the intensity and
from sewage handling far | the quality of the odor. D | age systems, pump stati
detectable and annoying | ions, force
mains, and long
are two convision descripto | g flat sewers. Odors are
rs of different intensities | generally characterized
and qualities of odors | intensity, quality, and placed of evaluation is no
rare circumstances. It
estimated based on ty | sewage handling facilities
geographic spread. For
of common, and will not
the potential for odor an
pixal applications and not
of events, average flow | plenning purposes this
be done except in very
d air emissions will be
sodel predictions for | | | | | | Issolved Oxygen
npacts | Dissolved oxygen in street | arra is dependent on a va | riety of factors including | BOD load, nutrient load, at | tream flow velocity, wate | or temperature, etc. | of various loading con- | uality Tool will be used to
ditions, flows, temperati
rojects will be estimated
condition scenarios. | res, etc. Probable | | | | | | ownstream
ripects | been identified as the sou | or to conditions in the Chic
size of 30 - 45% of the tot
have detrimental impacts | al nutrient loads reachin | County. Nutrient loadings i
g the Gulf of Mexico. BOD | in the Ohio (not just Jeffe
is not likely to persist in | reson County) have
the river long enough | Pollutant removals will
average loads, since the
and comulative. | be estimated based on
he downstream impacts | neductions in annual
are primerily long-term | | | | | | ream Flow
spects (Peak
res) | Extremently high peak for
make water based recrea | ws as are often caused b
tion unsafe or impractice | y urbanization of a water | rshed can erode the stream | mbed, demage aquatic a | nd terrestrial habitat, | sources, and the Wate | estimate flow peaking (
r Quality Tool has a hy-
during various atorm en | draulic component to | | | | | | ream Flow
spects (DWF only) | Diversion of films away for
measures such as ground | om a stream due to alian
dwater pumping can incre | donment of a treatment
ase base flows with ben | plant etc. can reduce base
eficial results. | flows in a stream. Alter | matively, other control | Predictive models can
Water Quality Tool has
flows during various di | a hydraufic componen | ividual sources, and the
to estimate stream | | | | | | cronyma
GC - Beargrass Cree
50 - Biological cryg-
50 - Combined sews | en demand | | DO - Dissolved oxygen
DWF - Dry weather flow
right - Milligram per liter | | S&F - Solids and floatet | iles | | | | | | | | | | | | | | enerson | town Bie | naing E | liminatio | n Evaluat | tion - Alte | ernative | 1 | | |---|--|--|--|---|--|---
--|--|--|--|---|--|-----------------| | Value: | Eco-Friendly | y Solutions | | | | | | | | | | | | | Aspect | -5 | -4 | -3 | -2 | -1 | 0 | I t | coring | 3 | | | | | | Non-Renewable
Energy
Consumption | Primary energy
consumption is greater
than secondary
treatment | Primary energy
consumption equal to 75 -
100% of secondary
treatment | Primary energy
consumption equal to 30 -
75% of secondary
treatment | Primary energy
consumption equal to 15
30% of secondary
treatment | Primary energy consumption
equal to 0 - 15% of
secondary treatment | No energy consumption
except for cleaning and
maintenance | Cleaning and maintenence
not needed, no primary
consumption | NA . | NA S | NA. | NA S | Assumptions Energy consumption needed for storage and pump station at the plant, 80% of flow pumped, secondary treatment still required and of pipe | Score Per Aspec | | Use of Natural
Systems | Constructed facilities
permanently displace
5+ acres wetlands or
50% locally available
green space | Constructed facilities
permanently displace 3 - 5
acres wettands or 25 - 50%
locally available green
space | Constructed facilities
permanently displace 1 - 3
acres wettands or 10 - 151
locally available green
space | Constructed facilities
permanently displace 0 -
acre wetlands or up to
10% locally available
green space | Constructed fecilities
temporarily disrupt wetlands
or green space | Alternative does not use or affect natural systems, wetlands, or green space | Alternative doesn not use
natural systems, but
enhances green space or
wetland | Natural systems play a mino
role in alternative function,
up to 1 acre wedand or 10%
additional green space
created | Netural systems are
significant part of alternative
function, 1 - 3 scress of
wettand created or 10 - 25%
additional green space | Alternative fully uses natural
systems, 3 - 5 scree of
wetland created or 25-50%
additional green space | Alternative results in multi-
use natural system
development, 5+ acres of
welland or 50% additional
green space | Construction would temporarily disrupt green space, but potentially allow new green space to be created at the existing plant size | 1 | | Multiple-Use
Facilties | Constructed facilities
permanently aliminete
recreational
opportunity | Constructed facilities
significantly impera
recreational opportunity | Constructed facilities
moderately impare
recreational opportunity | Constructed facilities have
minor impacts on
recreational opportunity | Construction temporarily
impacts recreational
opportunity | No impacts on recreational opportunities | Alternative improves
access to existing
recreational areas | Alternative has limited positive impact on recreation | Atternative significantly
enhances recreational
apportunities | Atternative increases recreational opportunities in area | Alternative results in multi-
use facility | Portion of plant site could be converted to multi-
use recreation when beatment process is
decommissioned. | 2 | | Source Control
of subwatershed
pollutant loads | increased by 50% | Polistant loadings are
increased by 30 - 50% | Pollutant feedings are
increased by 10 - 30% | End of pipe pollutent
loadings are increased by
0 - 10% | End of pipe pollutent
loadings impacts are
inconsistent, but likely higher | End of pipe pollulant loading
are unchanged | Diversion transfers more
than 25% of pollutent
loadings to less sensible
receiving water | Diversion transfers more
than 50% of pollutant
bedings to less sensitive
receiving water | Diversion transfers more
then 75% of pollutent
loadings to less sensitive
receiving water | Diversion transfers more
than 90% of pollutant
loadings to less sensitive
receiving water | Olversion transfers more
than 100% of pollutant
loadings to less sensitive
receiving water | 79% of pollutant loads transferred to Otio
River, a less sensitive watershed. | 3 | | Non-Obtrusive
Construction
Techniques | Permanent loss of
green space or
sensitive area
disruption | Main thoroughfare
closures, sensitive area
temporary insruptions | Widespread dust and
noise, blasting, secondary
street closures | Localized dust, noise and local street closures | Minor dust and noise, treffic tane closures | No construction expects | NA | NA | NA | NA | NA | Construction would cause localized dust and noise with street closures | -2 | | Consistent Land
Use | Intrusive or nuisence
fecilities inconsistent
with neighborhood or
land use. | Facilities incomistent with
neighborhood or land use. | Facility characteristics
mitigated to reduce impact
on neighborhood | density or land use | Facility has minor impact on
development density or land
use | No impact on land use or no
above ground facilities | Alternative mitigates
existing compatibility
problem | Alternative removes facility inconsistent with
neighborhood | Alternative removes
minance facility from
neighborhood | Alternative enhances
property values in
neighborhood | Alternative provides
enhancements that
significantly improve
neighborhood | Facilities on plant site will be reduced to a
pump station and storage facility, eliminating the
existing incompetable use of a treatment
facility. | 2 | | Impermeable
Surfaces | S acres+ of
impermeable surfaces
are added | 3 - 5 acres of impermestile
surfeces are added | 1 - 3 scres of impermeable
surfaces are added | up to 1 acre of
impermeable surfaces are
edded | Minor increase in
impermeable surfaces
added | No change in impermeable surface | Minor reduction in
Impermeable surfaces | Up to 1 acre of impermeable surfaces removed | 1 - 3 acres of impermeable
surfaces removed | 3 - 5 acres of impermeable surfaces rerroved | More than 5 acres of
impermeable surfaces
removed | No change in impermeable surface in all options | 0 | | LEEDS
Performance | NA. | NA | NA | NA | NA | LEEDS not applicable or
LEEDS score <10 | LEEDS Score 10 - 25 | LEEDS Certified | LEEDS Silver | LEEDS Gold | LEEDS Platinum | LEEDS not applicable or LEEDS acore < 10 | 0
| | | tions; (1.) Score each alternative for each of the eight aspects of the value. Scores can be positive or negative, depending on the imp the total score for this alternative in this value. (3.) Shaded area represents "fatal flaw". Alternatives that score in this area should no | | | | | - | | | | | | | | | Instructions: (1.)
to get the total so | Score each alternat
ore for this alternat | ive for each of the eightive in this value. (3.) S | nt aspects of the value
haded area represents | . Scores can be posi
a "fatal flaw". Alterna | tive or negative, depend
tives that score in this | ding on the impact of th
area should not be prop | e alternative on the va | due. (2.) Total the scores | for each aspect | | Total Raw Score | Calculated | 3 | | Aspect | Score each alternations for this alternat | ive for each of the eight
live in this value. (3.) S | nt aspects of the value
haded area represents | . Scores can be posi
"fatal flaw". Alterna | tive or negative, depend
tives that score in this | ding on the impact of th
area should not be prop | Measurement M | | for each aspect | | Total Score (E | | 3 | | to get the total so | Rationale | live in this value. (3.) S | haded area represents | s "fatal flaw". Alterna | tive or negative, depend
tives that score in this
tives that score in this
ergy consumption against con- | area should not be prop | Measurement M | Method | | Note: The total score
maximum score of 25 v | Total Score (E | | 3 | | Aspect Non-Renewable Energy | Rationale Eco-friently solutions w provides penalty points Netural systems replace | rould be expected to be low core for high energy consuming a | haded area represents consumers of non-renewable dernatives. | s "fatal flaw". Alterna | tives that score in this | area should not be prop | Measurement N Evaluation of primary energy energy consumed at the W Acres of wetlands and other | Method | taled, compared to the | Note: The total score of 25 v | Total Score (E | Default) | 3 | | Aspect Non-Renewable Energy Consumption Use of Natural | Rationale Eco-friendly solutions we provides penetty points Netural systems replact various kinds. Options Eco-friendly solutions or | rould be expected to be low or for high energy consuming a concrete and steel construction that reduce welfands and gre | consumers of non-renewable determined and the consumers of non-renewable determined and the consumers are some space get penalty points as fair both water-based and | "fetal flaw". Alterna
energy, Benchmarking one
r legoons, constructed biase | arry consumption against con- | area a hould not be prop
ventional secondary treatment
notease green space of | Measurement N Evaluation of primary energy energy consumed at the W Acres of vettlands and othe subjective evaluation of the Subjective evaluation of ch | Method gy consumed per MG of flow try CWTP per MG treated. to hypes of green space created "basis" of the attenutive - "gre songer predicted in the aquatic increased base flow or decree | reled, compared to the or eliminated. Also includes en' or "gitey". | Note: The total score
maximum score of 25 t | Total Score (E | Default) | 3 | | Aspect Non-Renewable Energy Consumption Use of Natural Systems Aultiple-Use | Rationale Eco-friently solutions we provides penalty points when the provides penalty points were replaced with the provides penalty points when the provides penalty points with the provides and a | rould be expected to be low or for high energy consuming a
e concrete and steel construint
that reduce wetlends and gre-
resde recreational opportunities
creation. Bird watching, his
dis at the source through beh- | haded area represents consumers of non-renewable identitives. ction with well bettom storaged interestation with well bettom storaged interestation with well bettom storaged interestation with storaged interestation with the storage | "fetal flaw". Alberna
energy, Benchmarking ene
r lagoons, constructed biass
programme of the constructed biass
special programme of the constructed
special programme of the constructed
special programme of the constructed | arry consumption against con- | area a hould not be prop
ventional secondary treatment
crease green space of
wading, swimming str. would | Measurement II Evaluation of primary energy energy consumed at the W Acres of vettlands and othe subjective evaluation of the Subjective evaluation of cha- result of british water quality these cover or vegitated spec Modeled land-side poliutant | Method gy consumed per MG of flow try CWTP per MG treated. to hypes of green space created "basis" of the attenutive - "gre songer predicted in the aquatic increased base flow or decree | or eliminated. Also includes
en' or "grey". or eliminated. Also includes
en' or "grey". or riperials environment as a
assell flow passia, increased
feet by the BOC Water Qualific. | Note: The total score
maximum score of 25 t | Total Score (E | Default) | 3 | | Aspect Aspect Non-Renewable Energy Consumption Use of Natural Systems Autisple-Use acilities Source Control of subwatershed | Rationale Eco-friently solutions we provides penalty points Natural systems replace various kinds, Options Eco-friently solutions or too direct water-based re Controlling poliutant loss avoiding and of pipe the | rould be expected to be low or for high energy consuming a
concrete and steel construct that reduce wellands and greater recreational opportunities reduce wellands and greater recreation. Bird watching, naid set the source through behaltment requirements. | haded area represents consumers of non-renewable identifiers ction with wet bottom storage en space get penalty points as for both water-based and any, taking, picnicing, campin evice modification, product n | "fetal flaw". Alterna
energy, Benchmarking one
lagoons, constructed bias-
iparian recreation. Boeting
iparian recreation. Boeting
g etc., would be considered | argy consumption against com-
wister, rain perdens etc. that in
wister, rain perdens etc. that in
concing, keyesting, fishing,
related riperian recreation. | area a hould not be propertional secondary treatment of the properties of wading, swimming str., would are pollutarits thereby | Measurement II Evaluation of primary energy energy consumed at the W Acres of vettlands and othe subjective evaluation of the Subjective evaluation of the subjective evaluation of chromatil of britter water quality tree cover or vegitated (spa- Modeled land-eide poliutant Tool or by comparision to fit | Method by consumed per MG of flow try CWTP per MG treated. r hypes of green space created basis of the attension - "ye enges predicted in the equatic r, increased base flow or iterre rate areas ste. I loading reductions as calculat eresture values or pilot program babble construction impacts has babble construction impacts has | or eliminated. Also includes
en' or "gitey". or riptey". or riptey'. or riptey's environment as a
seed flow passia, increased
interesting the properties of the
interesting the properties of the
interesting the properties of the
interesting the properties of the
interesting the
interesting
interesting the
interesting the
interesting the
interestin | Note: The total score
maximum score of 25 t | Total Score (E | Default) | 3 | | Aspect ion-Renewable inergy consumption Jise of Natural pystems fulliple-Use acities fource Control of ubwatershed ollutant loads ton-Obtrusive construction echniques | Rationale Eco-friendly solutions we provides penelty points Natural systems replace vertous kinds. Options to be direct water and the conditions of the conditions. Probable conditions. Alternative configuration uply. The same pump s | rould be expected to be low to for high energy consuming a
e concrete and steel constring to
that reduce welfands and gire
that reduce welfands and gire
reads recreational opportunities
coreation. Bird watching, his
did at the source through behalter frequirements
mpacts on traffic, noise and did
train either enhance or detra | haded area represents consumers of non-renewable identitives. ction with wet bottom storage an spoce get penalty points as for both water-based and age, librage, penalty points evior modification, product or unit are all measures of the fi ct from the surrounding prop a residence than filts right in | "festal flaw". Albertsa energy, Benchmarking one lagoons, constructed bisss spaces of an abstractive splacements or stormwater splacements of an abstractive erty. For example, an extre erty. For example, an extre erty. Be neighborhood. If a | argy consumption against con- ergy consumption against con- erge, rain genders etc. that in protection of the control of the control construction impacts get pe mely unfriently pump station larger perceil of pump station | area should not be prop ventional secondary treatment, ventional secondary treatment, crease green space of weding, swimming etc. would are pollutants thereby matry points for creating | Measurement N Evaluation of primary snore energy consumed at the W Acres of wetfamets and othe subjective evaluation of the subjective evaluation of primary of the subjective of vegitated ripse Modeleid Band-side politicars Tool or by comparation to 8 Subjective evaluation of pri constitution envisioned for All the planning level, project | Method by consumed per MG of flow try CWTP per MG treated. r hypes of green space created basis of the attension - "ye enges predicted in the equatic r, increased base flow or iterre rate areas ste. I loading reductions as calculat eresture values or pilot program babble construction impacts has babble construction impacts has | or eliminated. Also includes
err or "gley". or eliminated as a
eased flow peeks, horeased
to the BDC Water Quelin,
measurements. | Note: The total
score maximum score of 25 t | Total Score (E | Default) | 3 | | Aspect Non-Renewable Energy Consumption Use of Natural Systems Aultiple-Use acities Source Control of uldwaters shed solutant loads Ion-Obtrusive Construction | Rationale Eco-friently solutions we provides penetly points Natural systems replace we would be a solution to be direct water-based to be direct water-based to be direct water-based or controlling poliulant bear working and of pipe their poliulant bear working and poliu | thee in this value, (3.) S rould be expected to be low or for high energy consuming a concrete and steel constraint of that reduce wetlends and girl reads recreational opportunities creation. Bird watching, na, did at the source through behat attempt requirements in the contract of the contract in c | consumers of non-renewable stematives. It is not better at reason and a stemative service and points are against a stemative service and points are stematically product of the service modification, product or unit are all measures of the fact of them the surrounding proper a residence that tilts right in upration or office green space and the surrounding proper a residence or office green space. | "festal flaw". Albertsa energy, Benchmarking one plagoons, constructed bisss sparian recreation. Boating g etc. would be considered itendiness of an alternative. itendiness of an alternative. erty. For example, an extre with the neighborhood. If a added to enhance the neigh , and the total transport of | array consumption against com- array consumption against com- array consumption against com- array consumption against com- array consumption, keystaing, fishing, violated riperan recreation. Tennagement BMPs that capt. Construction impacts get pe rectly unfriendly pump station larger percel of land is evaluate Mountmood. | area a hould not be prop ventional secondary treatment. Accrease green space of weding, swimming etc. would are pollutants thereby and points for creating can be noisy, smally, and ale, a pump station can be | Measurement N Evaluation of primary snorg emergy consumed at the W Acres of vestlands and othe subjective evaluation of the pro- constitution envisioned for At the planning level, project surrounding properties. De | Method by consumed per MG of flow tre which is a present agues a created r hypes of green squice created "basis" of the attenuative - "gre songer predicted in the equatic is not created than flow or increa- tion areas etc. I loading reductions as calculated to the creative values or pilot progreen babble construction impacts her the attenuative. It can be defined to avoid nega- proving on the availability of le surages project definition and bus larges project definition and bus | or eliminated. Also includes
err or "gley". or eliminated as a
eased flow peeks, horeased
to the BDC Water Quelin,
measurements. | Note: The total score maximum score of 25 t | Total Score (E | Default) | 3 | | Value: | | | | | | | S_JT_J | T_NB01/ | A_03_C | | | | | |--|--|--|---|---|--|---|---
--|--|---|--|---|-----------------------| | | Eco-Friendly | y Solutions | | | | | | | | | | | | | Aspect | -5 | -4 | - 3 | -2 | -1 | 0 | T 1 | oring 2 | 1 | 4 | 5 | Assumptions | Score Per Aspec | | Non-Renewable
Energy
Consumption | Primary energy
consumption is greater
than secondary
treatment | Primary energy
consumption equal to 75 -
100% of secondary
treatment | Primary energy
consumption equal to 30 -
75% of secondary
treatment | Primary energy
consumption equal to 15 -
30% of secondary
treatment | Primary energy consumption
equal to 0 - 15% of
secondary treatment | No energy consumption
except for cleaning and
maintenance | Cleaning and maintenance
not needed, no primary
consumption | NA | NA | NA | NA | Energy consumption due to incresse in pumping | -1 | | Use of Natural
Systems | Constructed facilities
permanently displace
S+ acres wellands or
50% lacelly available
green space | Constructed facilities
permanently displace 3 - 5
acres wettands or 25 - 509
locally available green
space | Constructed facilities
permanently displace 1 - 3
acres wellands or 10 - 151
locally available green
space | Constructed facilities
permanently displace 0 - 1
acre wetlands or up to
10% locally evallable
green space | Constructed facilities
temporarily disrupt wetlands
or green space | Alternative does not use or
affect natural systems,
wellands, or green space | Alternative doesn not use
natural systems, but
enhances green space or
wetlend | Natural systems play a mino
role in ellernative function,
up to 1 scre wellend or 10%
additional green space
created | Natural systems are
significant part of alternative
function, 1 - 3 acres of
welland created or 10 - 25%
additional green space | Alternative fully uses natura
systems, 3 - 5 acres of
welland crasted or 25-50%
additional green space | Alternative results in multi-
use natural system
development, 5+ acres of
welland or 50% additional
green space. | Force Main construction temporarily disrupts green space | . 31 | | Multiple-Use
Facilties | Constructed facilities
permanently eliminate
recreational
opportunity | Constructed facilities
significantly impare
recreational opportunity | Constructed facilities moderately impairs recreational opportunity | Constructed facilities have
minor impacts on
recreational opportunity | Construction temporarily impacts recreational opportunity | No impacts on recreational opportunities | Afternative improves access to existing recreational areas | Alternative has limited positive impact on recreation | Alternative significantly enhances recreational opportunities | Afternative excreases recreational opportunities in area | Alternative results in multi-
use facility | No impact | 0 | | Source Control
of subwatershed
pollutant loads | Pollutant loadings are
increased by 50% | Pollutant loadings are
vicreased by 30 - 50% | Pollutant loadings are
increased by 10 - 30% | End of pipe pollutant
loadings are increased by
0 - 10% | End of pipe pollutant
loadings impacts are
inconsistent, but likely higher | End of pipe pollutant loadings
are unchanged | Pollutant loadings impacts
are inconsistent, but likely
lower | Source control reduces pollutant loadings by 0 - 10% | Source control reduces pollutant loadings by 10 - 30% | Source control reduces pollutant loadings by 30 - 50% | Source control reduces pollutant loadings by more than 50% | End of pipe pollutant loadings impacts are inconsistent, but likely higher in all options | -1 | | Non-Obtrusive
Construction
Techniques | Permanent loss of
green space or
sensitive area
disruption | Main thoroughfare
closures, sensitive area
temporary disruptions | Widespread dust and
noise, blesting, secondary
street closures | Localized dust, noise and local street closures | Minor dust and noise, traffic
lane closures | No construction impacts | NA. | NA | NA | NA | NA | Force main construction would result in minor dust and lane closures | -1 | | Consistent Land
Use | Intrustive or nuisance
facilities inconsistent
with neighborhood or
lend use. | Facilities inconsistent with
neighborhood or land use. | Fecility characteristics
mitigated to reduce impact
on neighborhood | Facilies have significant
impact on development
density or land use | Facility has minor impact on
development density or land
use | No impact on land use or no
above ground facilities | Attenuative miligates
existing competibility
problem | Atternative removes facility inconsistent with
neighborhood | Alternative removes
noisance facility from
neighborhood | Atternative enhances
property values in
neighborhood | Atternative provides
enhancements that
significantly improve
neighborhood | No impact on land use or above ground facilities in all options | 0 | | Impermeable
Surfaces | 5 acres+ of
impermeable surfaces
are added | 3 - 5 acres of impermeable
surfaces are added | 1 - 3 acres of impermeable
surfaces are
added | impermesble surfaces are | Minor increase in
impermeable surfaces
added | No change in impermeable surface | Minor reduction in
impermeable surfaces | Up to 1 acre of impermeable surfaces removed | 1 - 3 acres of impermeable
surfaces removed | 3 - 5 acres of impermeable surfaces removed | More than 5 acres of
impermeable surfaces
removed | No change in impermeable surface in all options | 0 | | LEEDS
Performance | NA | NA | NA | NA. | NA | LEEDS not applicable or
LEEDS score <10 | LEEDS Score 10 - 25 | LEEDS Certified | LEEDS Silver | LEEDS GOM | LEEDS Pletinum | LEEDS not applicable or LEEDS score < 10 in all options | 0 | | | | | | | | | | lue. (2.) Total the score | s for each aspect | | Total Raw Score | Calculated | -4 | | Aspect | Rationale | | | | | | Measurement M | Method | | | Corrected 5 | Score | . 4 | | Non-Renewable
Energy
Consumption | Eco-friendly solutions v
provides penalty points | would be expected to be low
for high energy consuming | consumers of non-ranewable
afternatives. | energy, Benchmarking éne | ergy consumption against conv | entional secondary treatment | Evaluation of primary energy energy consumed at the W | | wated, compared to the | Note: The total score
maximum score of 25 | | ore than 25. In the instances where th | is might occur, a def | | Use of Natural
Systems | Natural systems replac
various kinds. Options | e concrete and steel constru
that reduce wetlands and go | ection with well bollom storage
een space get penalty points | e legoons, constructed biox | vales, rain gardens etc. that in | crease green space of | Acres of wellands and other | | d or eliminated. Also includes | | | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | al systems replace concrate and afset construction with wet bottom storage legions, constructed bloowaites, rain gardens etc. that increase green space of is binds. Options that reduce wetlands and green space get penalty points. In the construction of the property of the construction | | | | | | types of green space created
"basis" of the alternative - "gre | een" or "grey". | | | | | | Multiple-Use
Facilties | Eco-friendly solutions of
be direct water-based of | reate recreational opportunt
ecreation. Bird watching, his | ies for both water-based and
king, bilking, picnicing, campi | riparism recreation. Boating
ig etc. would be considered | , canning, kayaking, fishing, v
related riparian recreation. | waiting, swimming atc. would | Subjective evaluation of ch | "basis" of the alternative - "gra
anges predicted in the equation
, increased base flow or decre | or riperien environment as e | | | | | | Multiple-Use | be direct water-based r | ecreation. Bird watching, his | king, biking, picnicing, campi | ng etc. would be considered | g, canoing, kayaking, fishing, v
related fiparien recreation. management BMPs that capts | | Subjective evaluation of chresult of better water quality tree cover or vegitated rips | "basis" of the alternative - "gra
anges predicted in the equation
, increased base flow or decre | or riperien environment as a
exact flow peeks, increased
ated by the BGC Water Quality | | | | | | Multiple-Use
Facilties
Source Control of
subwatershed | be direct water-based a
Controlling pollutant has
avoiding and of pipe tre | ecreation. Bird watching, hill
ads at the source through bel
atment requirements | hang, bilding, picnicing, campi | ng etc. would be considered | related riparien recreation. | ire pollutants thereby | Subjective evaluation of characteristic defection where quality tree cover or vegitated rips. Modelind tand-side pollutar Tool or by companishes to 8 | "basis" of the attendative - "girl
anges predicted in the aquadic
i, increased base flow or decre
sen areas etc. I loading reductions as calculat
erature values or gill of program
hable construction impacts be
hable construction impacts be | or riperian environment as a
nased flow peaks, increased
steed by the BGC Water Quality
is measurements. | | | | | | Multiple-Use Facilities Source Control of subwistershed solidurant loads Non-Obtrusive Construction Fechniques | be direct water-based of
Controlling pollutant to
avoiding end of pipe tre
Probable construction in
nuisance conditions.
Alternative configuration
ugly. The same pump
ugly. | ecreation. Bird watching, hill use at the source through bel- extreent requirements repeats on treffic, noise and on can either enhance or debra station can be "disguised" as | why, bithing, picricing, campin
havior modification, product of
dust are all measures of the to
act from the surrounding pro- | ng etc., would be considered eplecements or stormwester therefiness of an alternative perty. For example, an extre with the neighborhood. If a | related riparien recreation. management BMFs thet capti Construction impacts get pe metry unfoendly pump station larger percei of land is evaleties. | ore pollutants thereby makly points for creating | Subjective errabation of chreated of bottler water quality tree cover or vegitated rips. Modeled land-side politism. Tool or by comparison to it. Subjective errabation of processing tools are subjective expension of processing the construction envisioned for At the planning level, projective. | "basis" of the attendative - "girl
anges predicted in the aquadic
i, increased base flow or decre
sen areas etc. I loading reductions as calculat
erature values or gill of program
hable construction impacts be
hable construction impacts be | or riparian environment as a
exact flow peaks, increased
and by the BGC Water Quality
in measurements.
seed on the type of
safer impacts on the
active on
active on
active
active impacts on
active on
active
active impacts on
active impacts on
active
active impacts on
active
active
active
active
active
active
active
active
active
active
active
active
active
active
active
active
active
acti | | | | | | Multiple-Use
Facilities
Source Control of
subwatershed
soliutant loads | be direct water-based of
Controlling pollutant has
excising and of pipe for
Probable constituction
rule some conditions.
Alternative configuration
togly. The same pump indicentions was
Adding importmeable as
Adding importmeable as | ecreation. But watching, hill as at the source through between requirements requests on treffic, noise and in can either enhance or detir station can be "disguised" as discaping, and a community whereas increases total runoff | why, bithing, picricing, campin
havior modification, product or
dust are all measures of the
sect from the surrounding prop
a residence that the right in
periden or other green space | ng etc., would be considered eplecements or stormwester eplecements of an alternative intendificess of an alternative eith the neighborhood. If a added to enhance the neigh es, and the lotal transport of | related riparien recreation. menegement BMPs that capture and the | ore pollutants thereby mally points for creating can be noisy, smelly, and le, a pump station can be | Subjective evaluation of chi
result of better water quality
thes cover or vegitated rips
the cover or vegitated rips
Modeled land-side pollutar
Tool or by comparision to 8
Subjective evaluation of pro-
construction envisioned for
At the planning level, project
surrounding properties. De-
position, This aspect encour | Tossis of the alternative - "girl
progress predicted in the aquetic
increased base flow or decre
fair erease etc. Lossling reductions as calculat
lossling reductions as calculat
erature values or pilot program
beable construction impacts be
the alternative. In can be defined to avoid neg
project definition and but
progress project and
progress project
progress project
progress project
progress project
progress project
progress project
progress project
progress project
project
progress project
progress
progress
project
project
project
progress
p | or riparian environment as a
exact flow peaks, increased
and by the BGC Water Quality
in measurements.
seed on the type of
safer impacts on the
active on
active on
active
active impacts on
active on
active
active impacts on
active impacts on
active
active impacts on
active
active
active
active
active
active
active
active
active
active
active
active
active
active
active
active
active
acti | | | | | ### **Cluster Comparison** # Project #1: S_JT_JT_NB01_01_C_A (Alternative 2) #### Raw Benefit Score² | CSO/SSO ID | | Regulatory
Performance | Public Health | Asset
Protection | Environmental
Enhance | Eco-Friendly
Solutions | |---|----------------------|---------------------------|---------------|------------------------|--------------------------|---------------------------| | ISO28 | | 21 | 22 | 10 | 2 | 0 | | 28390 | | 5 | 7 | 10 | 2 | 0 | | 31733 | | 21 | 20 | 10 | 2 | 0 | | 28395A | | 5 | 3 | 10 | 2 | 0 | | 64505 | | 5 | 3 | 10 | 2 | 0 | | MSD0255 | | 0 | 0 | 10 | 2 | 0 | | 28392 | | 0 | 0 | 10 | 2 | 0 | | 28391 | | 0 | 0 | 10 | 2 | 0 | | 28173 | | 0 | 0 | 10 | 2 | 0 | | 64096 | | 21 | 8 | 5 | 4 | -4 | | 86052 | | 21 | 22 | 5 | 4 | -4 | | 92061 | | 0 | 0 | 5 | 4 | -4 | | MSD0263 | | 21 | 18 | 5 | 4 | -4 | | Weighting Factor | | 8 | 10 | 6 | 8 | 6 | | Weighted Benefit Score | | 960 | 1030 | 660 | 272 | -96 | | Total Benefit Score | 2826 | | | | | | | Total Capital Cost ³ | 25798000 | | | | | | | Total Present Worth Costs ³ | | | | | | | | Weighted Benefit/Cost Ratio (Capital
Costs) Weighted Benefit/Cost Ratio (Total Present Worth Costs) | 10.954338
#DIV/0! | | | Nother transfer or the | | | #### Notes: - 1. Data Input Cells are highlighted in yellow - 2. Raw Benefit Scores for Regulatory Performance and Public Health values are from the CSO or SSO Level of Control Benefit Sheets - 3. Capital and Total Present Worth Costs from the "Proj Summary" Page of the Cost Model for the clustered alternative (Reference JT NB01 BCA Q Qxis 2-Year Jeffersontown Blending Elimination Plan - Original IOAP, Alternatives 1, 2, 3 (all the same) | | Measure | | In | npact | / Freq | uency | - | Rationale | Meas | urement Met | nod | |-------------------------|--------------------|---------------|------------|--------|--------|---------|---|--|--|-------------|-------------| | Performanc
e Measure | SSOs | 6 month | 1 Year | 2 Year | 5 Year | 10 Year | Modeled
Overflow
Point or No
discharge | Regulations do not distinguish between potential impact of SSOs, therefore frequency and impact are the same for Regulatory Performance value Modeled Overflow Points are not considered until verified. | Measurement method quantify the SSO disc | | : models to | | | Value | 25 | 12 | 0 | 4 | 1 | 0 | | | | | | | ISO28 | BL | | | PR | | | | 25 | 4 | 21 | | | 28390 | | | BL | PR | | | | 9 | 4 | 5 | | cy | 31733 | BL | | | PR | | | | 25 | 4 | 21 | | enc | 28395A | | | BL | PR | | | | 9 | 4 | 5 | | Frequency | 64505 | | | BL | PR | | | | 9 | 4 | 5 | | F | MSD0255 | | | | | | BL | | 0 | 0 | 0 | | | 28392 | | | | | | BL | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 0 | 0 | | | | 28391 | | | | | | BL | | 0 | 0 | TAN | | | 28173 | | | | | | BL | | 0 | 0 | | | ote - This v | alue sheet calcula | ites the tota | I benefit. | | | | | 3. 1. 7 | | | | | | Measure | | Ir | npact | / Freq | uency | T | Rationale | Mooo | urement Met | h a d | |-------------------------|---------|---------|--------|--------|--------|---------|---|--|--|-------------------------|-------| | Performanc
e Measure | SSOs | 6 month | 1 Year | 2 Year | 5 Year | 10 Year | Modeled
Overflow
Point or No
discharge | Regulations do not distinguish between potential impact of SSOs, therefore frequency and impact are the same for Regulatory Performance value Modeled Overflow Points are not considered until verified. | Measurement method quantify the SSO disc | s will be via hydraulie | | | | Value | 25 | 16 | 9 | 4 | 1 | 0 | | | | | | uency | 64096 | BL | | | PR | | | | 25 | 4 | 21 | | lank | 86052 | BL | | | PR | | | | 25 | 4 | 21 | | Freq | 92061 | | | | | | BL | | 0 | 0 | 0 | | _ | MSD0263 | BL | | | PR | | | | 25 | 4 | 21 | | /alue: | Public Hea | alth Enhar | cement - | SSOs | | | | | | | | |--|-------------------------|--|--|------------------------------------|----------------------------------|------------------------------------|--------------|---|------|------------------------------|--| | | Measure | | | Release | e Impact | | | Rationale | Meas | surement | Method | | Performance
Measures | SSOs | Basement
Flooding
or
Park or Blue-
Line Stream >
50,000 Gals
or
>200,000 Gals | Residential
Area > 50,000
Gals
or
Park or Blue
Line <50,000
Gals
or
> 100,000 Gals | Release
50,000 -
99,999 Gals | Release
20,000-49,999
Gals | Release
10,000 -
19,999 Gals | No discharge | Not all discharges violate the Clean Water Act. Discharges vary in the impact to public health and the environment. Therefore, EPA developed guidance on how to set priorities based on the risk to the public's health and the environment under their Enforce | | SO discharge a distance from | ria hydraulic model
nd the GIS to
designated | | > | 6 Month | 25 | 20 | 15 | 10 | 5 | 0 | Releases 900,000 gallons | 25 | 0 | 25 | | Frequency | 1 Year | 20 | 16 | 12 | 8 | 4 | 0 | Releases 2,000,000 gallons | 20 | 0 | 20 | | and and | 2 Year | 15 | 12 | 9 | 6 | 3 | 0 | Releases 3,080,000 gallons | 15 | 0 | 15 | | ē | 5 Year | 10 | 8 | 6 | 4 | 2 | 0 | Releases 4,600,000 gallons | 10 | 6 | 4 | | u. | 10 Year | 5 | 4 | 3 | 2 | 1 | 0 | Releases 5,720,000 gallons | 5 | 4 | 1 | | ite - This value s | heet calculates the ave | rage benefit over t | he recurrence inte | rvals. A correct | tion calculation is i | ncluded in order | to obtain a | Average Total S | core | | 13 | | Acronyms
CSO - Combine
FC - Fecal colife | d sewer overflow | | | | | | | Corrected Sco | re | | 22 | | /alue: | Public Hea | alth Enhar | ncement - | SSOs | | | | | | | | |-------------------------|-------------------------|--|--|------------------------------------|----------------------------------|------------------------------------|--------------|---|------|--------------------------------|--| | | Measure | | | Release | e Impact | | | Rationale | Meas | surement | Method | | Performance
Measures | SSOs | Basement
Flooding
or
Park or Blue-
Line Stream >
50,000 Gals
or
>200,000 Gals | Residential
Area > 50,000
Gals
or
Park or Blue
Line <50,000
Gals
or
> 100,000 Gals | Release
50,000 -
99,999 Gals | Release
20,000-49,999
Gals | Release
10,000 -
19,999 Gals | No discharge | Not all discharges violate the Clean Water Act. Discharges vary in the impact to public health and the environment. Therefore, EPA developed guidance on how to set priorities based on the risk to the public's health and the environment under their Enforce | | SO discharge a distance from (| ia hydraulic mode
nd the GIS to
designated | | > | 6 Month | 25 | 20 | 15 | 10 | 5 | 0 | No Discharge | 0 | 0 | 0 | | Frequency | 1 Year | 20 | 16 | 12 | 8 | 4 | 0 | No Discharge | 0 | 0 | 0 | | ane | 2 Year | 15 | 12 | 9 | 6 | 3 | 0 | Releases 63,000 gallons | 12 | 0 | 12 | | ě | 5 Year | 10 | 8 | 6 | 4 | 2 | 0 | Releases 167,000 gallons | 8 | 2 | 6 | | u. | 10 Year | 5 | 4 | 3 | 2 | 1 | 0 | Releases 248,000 gallons | 5 | 2 | 3 | | ta - This value s | heet calculates the ave | rage benefit over t | he recurrence inte | rvals. A correct | ion calculation is i | ncluded in order | to obtain a | Average Total S | core | | 4 | | FC - Fecal colife | d sewer overflow | | | | | | | Corrected Sco | re | | 7 | | Value: | Public Hea | alth Enhar | ntown Ble | SSOs | | | | | | | | |-------------------------|--------------------------|--|--|------------------------------------|----------------------------------|------------------------------------|--------------|---|------|------------------------------|--------| | | Measure | | | Release | e Impact | | | Rationale | Meas | surement | Method | | Performance
Measures | SSOs | Basement
Flooding
or
Park or Blue-
Line Stream >
50,000 Gals
or
>200,000 Gals | Residential
Area > 50,000
Gals
or
Park or Blue
Line <50,000
Gals
or
> 100,000 Gals | Release
50,000 -
99,999 Gals | Release
20,000-49,999
Gals | Release
10,000 -
19,999 Gals | No discharge | Not all discharges violate the Clean Water Act. Discharges vary in the impact to public health and the environment. Therefore, EPA developed guidance on how to set priorities based on the risk to the public's health and the environment under their Enforce | | SO discharge a distance from | | | 25 | 6 Month | 25 | 20 | 15 | 10 | 5 | 0 | Releases 80,000 gallons | 20 | 0 | 20 | | Frequency | 1 Year | 20 | 16 | 12 | 8 | 4 | 0 | Releases 172,000 gallons | 16 | 0 | 16 | | ž | 2 Year | 15 | 12 | 9 | 6 | 3 | 0 | Releases 269,000 gallons | 15 | 0 | 15 | | 9 | 5 Year | 10 | 8 | 6 | 4 | 2 | 0 | Releases 393,000 gallons | 10 | 2 | 8 | | щ | 10 Year | 5 | 4 | 3 | 2 | 1 | 0 | Releases 495,000 gallons | 5 | 2 | 3 | | ximum score of | heet calculates the aver | rage benefit over t | he recurrence inte | rvais. A correcti | on calculation is i | ncluded in order | to obtain a | Average Total So | core | | 12 | | FC - Fecal colife | d
sewer overflow | | | | | | | Corrected Sco | re | | 20 | | /alue: | Public Hea | alth Enhar | ncement - | SSOs | | | | | | | | |--|-------------------------|--|--|------------------------------------|----------------------------------|------------------------------------|--------------|---|-----------------|--------------------------------------|--------| | | Measure | | | Release | e Impact | | | Rationale | Mea | surement | Method | | Performance
Measures | SSOs | Basement
Flooding
or
Park or Blue-
Line Stream >
50,000 Gals
or
>200,000 Gals | Residential
Area > 50,000
Gals
or
Park or Blue
Line <50,000
Gals
or
> 100,000 Gals | Release
50,000 -
99,999 Gals | Release
20,000-49,999
Gals | Release
10,000 -
19,999 Gals | No discharge | Not all discharges violate the Clean Water Act. Discharges vary in the impact to public health and the environment. Therefore, EPA developed guidance on how to set priorities based on the risk to the public's health and the environment under their Enforce | to quantify the | SSO discharge are
distance from o | | | > | 6 Month | 25 | 20 | 15 | 10 | 5 | 0 | No Discharge | 0 | 0 | 0 | | Frequency | 1 Year | 20 | 16 | 12 | 8 | 4 | 0 | No Discharge | 0 | 0 | 0 | | a a | 2 Year | 15 | 12 | 9 | 6 | 3 | 0 | Releases 2,000 gallons | 3 | 0 | 3 | | ē | 5 Year | 10 | 8 | 6 | 4 | 2 | 0 | Releases 31,000 gallons | 4 | 0 | 4 | | ш | 10 Year | 5 | 4 | 3 | 2 | 1 | 0 | Releases 46,000 gallons | 2 | 1 | 1 | | te - This value st | neet calculates the ave | rage benefit over ti | he recurrence inte | rvals. A correcti | on calculation is i | ncluded in order | to obtain a | Average Total So | core | | 2 | | Acronyms
CSO - Combined
FC - Fecal colifor | sewer overflow | | | | | | -17 | Corrected Sco | re | | 3 | | /alue: | Public Hea | alth Enhar | cement - | SSOs | | | | | | | | |--|-------------------------|--|--|------------------------------------|----------------------------------|------------------------------------|--------------|--|-------------------|---------------------------------------|--------| | | Measure | | | Release | e Impact | | | Rationale | Mea | surement l | Method | | Performance
Measures | SSOs | Basement
Flooding
or
Park or Blue-
Line Stream >
50,000 Gals
or
>200,000 Gals | Residential
Area > 50,000
Gals
or
Park or Blue
Line <50,000
Gals
or
> 100,000 Gals | Release
50,000 -
99,999 Gals | Release
20,000.49,999
Gals | Release
10,000 -
19,999 Gals | No discharge | Not all discharges violate the Clean Water Act.
Discharges vary in the impact to public health
and the environment. Therefore, EPA developed
guidance on how to set priorities based on the
risk to the public's health and the environment
under their Enforce | to quantify the S | SSO discharge ar
e distance from d | | | > | 6 Month | 25 | 20 | 15 | 10 | 5 | 0 | No Discharge | 0 | 0 | 0 | | Frequency | 1 Year | 20 | 16 | 12 | 8 | 4 | 0 | No Discharge | 0 | 0 | 0 | | n n | 2 Year | 15 | 12 | 9 | 6 | 3 | 0 | Releases 13,600 gallons | 3 | 0 | 3 | | ē | 5 Year | 10 | 8 | 6 | 4 | 2 | 0 | Releases 170,000 gallons | 8 | 2 | 6 | | ш | 10 Year | 5 | 4 | 3 | 2 | 1 | 0 | Releases 282,000 gallons | 5 | 2 | 3 | | te - This value s | heet calculates the ave | rage benefit over t | he recurrence inte | orvals. A correct | ion calculation is i | ncluded in order | to obtain a | Average Total So | core | | 2 | | Acronyms
CSO - Combine
FC - Fecal colifo | d sewer overflow | 100 | | | | | | Corrected Sco | re | | 3 | | Value: | Public Hea | alth Enhan | ncement - | SSOs | | | | | | | | |-------------------------|-------------------------|--|--|------------------------------------|----------------------------------|------------------------------------|--------------|---|------|-----------------------------------|--------| | | Measure | | | Releas | e Impact | | | Rationale | Mea | surement | Method | | Performance
Measures | SSOs | Basement
Flooding
or
Park or Blue-
Line Stream >
50,000 Gals
or
>200,000 Gals | Residential
Area > 50,000
Gals
or
Park or Blue
Line <50,000
Gals
or
> 100,000 Gals | Release
50,000 -
99,999 Gals | Release
20,000-49,999
Gals | Release
10,000 -
19,999 Gals | No discharge | Not all discharges violate the Clean Water Act. Discharges vary in the impact to public health and the environment. Therefore, EPA developed guidance on how to set priorities based on the risk to the public's health and the environment under their Enforce | | SO discharge a
e distance from | | | 25 | 6 Month | 25 | 20 | 15 | 10 | 5 | 0 | Releases 600 gallons | 5 | 0 | 5 | | Frequency | 1 Year | 20 | 16 | 12 | 8 | 4 | 0 | Releases 16,000 gallons | 4 | 0 | 4 | | ž | 2 Year | 15 | 12 | 9 | 6 | 3 | 0 | Releases 55,000 gallons | 12 | 0 | 12 | | 9 | 5 Year | 10 | 8 | 6 | 4 | 2 | 0 | Releases 123,000 gallons | 8 | 4 | 4 | | ш | 10 Year | 5 | 4 | 3 | 2 | 1 | 0 | Releases 160,000 gallons | 4 | 3 | 1 | | aximum score of | heet calculates the ave | rage benefit over t | he recurrence inte | rvals. A correct | ion calculation is i | ncluded in order | to obtain a | Average Total So | core | | 5 | | FC - Fecal colife | d sewer overflow | | | | | | | Corrected Sco | re | | 8 | | /alue: | Public Hea | alth Enhar | ncement - | SSOs | | | | | | | | |-------------------------|-------------------------|--|--|------------------------------------|----------------------------------|------------------------------------|--------------|---|-----------------|---------------------------------------|---| | | Measure | | | Release | e Impact | | | Rationale | Mea | surement | Method | | Performance
Measures | SSOs | Basement
Flooding
or
Park or Blue-
Line Stream >
50,000 Gals
or
>200,000 Gals | Residential
Area > 50,000
Gals
or
Park or Blue
Line <50,000
Gals
or
> 100,000 Gals | Release
50,000 -
99,999 Gals | Release
20,000-49,999
Gals | Release
10,000 -
19,999 Gals | No discharge | Not all discharges violate the Clean Water Act. Discharges vary in the impact to public health and the environment. Therefore, EPA developed guidance on how to set priorities based on the risk to the public's health and the environment under their Enforce | to quantify the | SSO discharge a
re distance from (| ia hydraulic model
nd the GIS to
designated | | > | 6 Month | 25 | 20 | 15 | 10 | 5 | 0 | Releases 155,000 gallons | 20 | 0 | 20 | | Frequency | 1 Year | 20 | 16 | 12 | 8 | 4 | 0 | Releases 223,000 gallons | 20 | 0 | 20 | | ž | 2 Year | 15 | 12 | 9 | 6 | 3 | 0 | Releases 292,000 gallons | 15 | 0 | 15 | | 5 | 5 Year | 10 | 8 | 6 | 4 | 2 | 0 | Releases 360,000 gallons | 10 | 2 | 8 | | ш | 10 Year | 5 | 4 | 3 | 2 | 1 | 0 | Releases 405,000 gallons | 5 | 2 | 3 | | ximum score of | heet calculates the ave | rage benefit over t | he recurrence inte | rvals. A correcti | on calculation is i | ncluded in order | to obtain a | Average Total Se | core | | 13 | | FC - Fecal colifo | d sewer overflow | | | | | | | Corrected Sco | re | | 22 | | /alue: | Public Hea | alth Enhar | ncement - | SSOs | | | | | | | | |--|--------------------------|--|--|------------------------------------|----------------------------------|------------------------------------|--------------|--|-------------------|-----------------------------------|--------| | |
Measure | | | Release | e Impact | | , | Rationale | Mea | surement | Method | | Performance
Measures | \$SOs | Basement
Flooding
or
Park or Blue-
Line Stream >
50,000 Gals
or
>200,000 Gals | Residential
Area > 50,000
Gals
or
Park or Blue
Line <50,000
Gals
or
> 100,000 Gals | Release
50,000 -
99,999 Gals | Release
20,000-49,999
Gals | Release
10,000 -
19,999 Gals | No discharge | Not all discharges violate the Clean Water Act-
Discharges vary in the impact to public health
and the environment. Therefore, EPA developed
guidance on how to set priorities based on the
risk to the public's health and the environment
under their Enforce | to quantify the S | SSO discharge are distance from (| | | > | 6 Month | 25 | 20 | 15 | 10 | 5 | 0 | Releases 36,000 gallons | 20 | 0 | 20 | | Frequency | 1 Year | 20 | 16 | 12 | 8 | 4 | 0 | Releases 71,000 gallons | 16 | 0 | 16 | | n n | 2 Year | 15 | 12 | 9 | 6 | 3 | 0 | Releases 123,000 gallons | 12 | 0 | 12 | | 9 | 5 Year | 10 | 8 | 6 | 4 | 2 | 0 | Releases 204,000 gallons | 10 | 4 | 6 | | ш | 10 Year | 5 | 4 | 3 | 2 | 1 | 0 | Releases 274,000 gallons | 5 | 2 | 3 | | te - This value s | sheet calculates the ave | rage benefit over t | he recurrence inte | rvals. A correct | ion calculation is i | ncluded in order | to obtain a | Average Total So | core | | 11 | | Acronyms
CSO - Combine
FC - Fecal colife | ed sewer overflow | | | | | | | Corrected Sco | re | | 18 | | Value: | Public Hea | alth Enhar | ncement - | SSOs | | | | | - 4 | | | |-------------------------|-------------------------|--|--|------------------------------------|----------------------------------|------------------------------------|--------------|---|-------------------|---------------------------------------|--| | | Measure | | | Release | e Impact | | | Rationale | Mea | surement | Method | | Performance
Measures | SSOs | Basement
Flooding
or
Park or Blue-
Line Stream >
50,000 Gals
or
>200,000 Gais | Residential
Area > 50,000
Gals
or
Park or Blue
Line <50,000
Gals
or
> 100,000 Gals | Release
50,000 -
99,999 Gals | Release
20,000-49,999
Gals | Release
10,000 -
19,999 Gals | No discharge | Not all discharges violate the Clean Water Act. Discharges vary in the impact to public health and the environment. Therefore, EPA developed guidance on how to set priorities based on the risk to the public's health and the environment under their Enforce | to quantify the S | SSO discharge ar
e distance from (| ia hydraulic mode
nd the GIS to
designated | | > | 6 Month | 25 | 20 | 15 | 10 | 5 | 0 | No Release | 0 | 0 | 0 | | requency | 1 Year | 20 | 16 | 12 | 8 | 4 | 0 | No Release | 0 | 0 | 0 | | ne | 2 Year | 15 | 12 | 9 | 6 | 3 | 0 | No Release | 0 | 0 | 0 | | ē | 5 Year | 10 | 8 | 6 | 4 | 2 | 0 | No Release | 0 | 0 | 0 | | II. | 10 Year | 5 | 4 | 3 | 2 | 1 | 0 | No Release | 0 | 0 | 0 | | aximum score of | heet calculates the ave | rage benefit over t | he recurrence into | rvals. A correct | ion calculation is i | ncluded in order | to obtain a | Average Total S | core | | 0 | | FC - Fecal colife | d sewer overflow | 4 | | | | | | Corrected Sco | re | | 0 | | ue: | Asset Pro | tection | | | | | | | | Solution and Alterantives 1, | | | | |----------------------|--------------|---------------------|-------------|--|---|--|---|---|--|---|---|--|-------------------| | | - 1 | Measure | | | | Im | pact | | | Rationale | Mea | surement Metho | d | | | | Flood | Damage | Homes or
businesses are
subject to severe
structural damage | Homes or
businesses are
subject to minor
to moderate
structural damage | Flooding limits
access to
homes or
businesses | Flooding limits
access to
recreational
areas | Standing water
on property, but
access not
affected and no
damage
expected | No standing water | Stomwater BMPs can reduce stomwater peaks and reduce extent of flooded areas, while sewer separation may increase localized stormwater peak flows and increase the flooding impacts of storms. Alternatively, purchase of highly impacted properties may be a cheaper way to reduce flood damage and create green space and buffer zones. | Customer Information Sys
areas combined with the e | vailable, historic customer o
stem, or historic observation
expected relative impacts o
ster flows. | ns of flood-prone | | Performance Measures | | Basemer | it Back-ups | Sewer
surcharging
within 6 feet of
ground surface
for more than
20% of manholes | Sewer
surcharging
within 6 feet of
ground surface
for 10 - 20% of
manholes | Sewer
surcharging
within 6 feet of
ground surface
for 5 - 10% of
manholes | Sewer
surcharging
within 6 feet of
ground surface
for 1 - 5% of
manholes | Sewer
surcharging
within 6 feet of
ground surface
for 0 - 1% of
manholes | No surcharging
within 6 feet of
ground surface | First floor levels are typically 1 - 2 feet above ground surface, and basement floors are typically 8 - 10 feet below the first floor. A sewer surcharge of 6 feet below ground surface is highly likely to cause back-ups in homes with basement service. | Measurement methods wi
hydraulic grade lines comp | Il be via hydraulic models to
pared to ground surface elec | | | rforman | Storm Events | 1 | • | Most Severe
Impact | | | | Least Impact | No Impact | | | | | | Pe | | 1 | | 5 | 4 | 3 | 2 | 1 | 0 | Assumptions | Base Case Score | Alternative Score | Total Score | | | 6 Month | Most
Likely | 5 | 25 | 20 | 15 | 10 | 5 | 0 | | 10 | 0 | 10 | | | 1 Year | | 4 | 20 | 16 | 12 | 8 | 4 | 0 | | 12 | 4 | 8 | | Frequency | 2 Year | | 3 | 15 | 12 | 9 | 6 | 3 | 0 | | 9 | 3 | 6 | | Freq | 5 Year | | 2 | 10 | 8 | 6 | 4 | 2 | 0 | | 8 | 4 | 4 | | | 10 Year | Least | 1 | 5 | 4 | 3 | 2 | 1 | 0 | | 5 | 3 | 2 | | | Not Possible | Not
Poss
ible | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Average | Total Score | | 6 | | | ject #1 | | | | | | | S_JT_ | JT_NB01A_0 | 3_C | | | | |----------------------|-------------------------|---------------------|------------------|--|---|--|---|---|--
--|---|--|-----------------------------------| | alue: | Asset Pro | | | | | | | | | And the second second | | | | | | | Measure | | | | Im | pact | | | Rationale | Mea | surement Method | d | | | | Flood | Damage | Homes or
businesses are
subject to severe
structural damage | Homes or
businesses are
subject to minor
to moderate
structural damage | Flooding limits
access to
homes or
businesses | Flooding limits access to recreational areas | Standing water
on property, but
access not
affected and no
damage
expected | No standing water | Stormwater BMPs can reduce stormwater
peaks and reduce extent of flooded areas,
while sewer separation may increase
localized stormwater peak flows and
increase the flooding impacts of storms.
Alternatively, purchase of highly impacted
properties may be a cheaper way to reduce
flood damage and create green space and
buffer zones. | Customer Information Sys | evailable, historic customer of
stem, or historic observation
expected relative impacts of
after flows. | ns of flood-prone | | Performance Measures | | Basemen | nt Back-ups | Sewer
surcharging
within 6 feet of
ground surface
for more than
20% of manholes | Sewer
surcharging
within 6 feet of
ground surface
for 10 - 20% of
manholes | Sewer
surcharging
within 6 feet of
ground surface
for 5 - 10% of
manholes | Sewer
surcharging
within 6 feet of
ground surface
for 1 - 5% of
manholes | Sewer
surcharging
within 6 feet of
ground surface
for 0 - 1% of
manholes | No surcharging
within 6 feet of
ground surface | First floor levels are typically 1 - 2 feet above ground surface, and basement floors are typically 8 - 10 feet below the first floor. A sewer surcharge of 6 feet below ground surface is highly likely to cause back-ups in homes with basement service. | Measurement methods w
hydraulic grade lines comp | ill be via hydraulic models to
pared to ground surface ele | o quantify the vations at manhole | | forman | Storm Events | 1 | • | Most Severe
Impact | | | | Least Impact | No Impact | | | | | | Per | | ļ | | 5 | 4 | 3 | 2 | 1 | 0 | Assumptions | Base Case Score | Alternative Score | Total Score | | | 6 Month | Most | 5 | 25 | 20 | 15 | 10 | 5 | 0 | | 5 | 0 | 5 | | | 1 Year | | 4 | 20 | 16 | 12 | 8 | 4 | 0 | | 4 | . 4 | 0 | | Frequency | 2 Year | | 3 | 15 | 12 | 9 | 6 | 3 | 0 | | 9 | 3 | 6 | | Freq | 5 Year | | 2 | 10 | 8 | 6 | 4 | 2 | 0 | The state of s | 8 | 6 | 2 | | | 10 Year | Least | 1 | 5 | 4 | 3 | 2 | 1 | 0 | | 4 | 3 | 1 | | | Not Possible | Not
Poss
ible | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Aver | age Score | | 3 | | Acronyms | sheet calculates the av | verage benefit | over the recurre | ence intervals. A corre | ction calculation is in | cluded in order to o | obtain a maximum sc | ore of 25. | - | Corre | cted Score | 12 | 5 | | Value: | Te . | | | | | Jenersc | MOWN B | nending | ⊏iiminati | on - Alterr | lative 2 | | | |--|--
--|--|---|--|--|--
--|--|---|---|--|--------------------| | | Environmental E | Enhancement | | | | | | | | | | | | | Aspect | - 3 | 1 4 | 1 3 | -2 | -1 | | So | oring 2 | 1 | 1 | | | | | Aquatic and
Terestrial Hebitat | Commission of habital for care o | Commission of arguidous | (Dimination of critical amount | | Miner imperament to evalue | Contractor to the Contractor | More entrancement of | Significant enhancement a | Creation of morer amount of | Creation of algorithmus amount | Greaten of critical habital for | Assumptions | Score Per Anne | | rotection | endangered species | actioned of common metabolic | of conseives tradulate | Significant habitat inglerement | habitel | File imprect on Netotal | Minut enflactument of
existing habites | westing hapitet | continues habitat | of comment habital | rais or endangered species | Plant Rose reduced that risk attrimated, Shaly minor impacts on existing habital during compliantion. | -1 | | esthetics - Solids | 9 795+ reduction in entures of | SO - 75% of flow with no 656 | 25 - 50% of fire with no 540 | 10 - 25% of four with me DAF | Reduces efficiency of estation | • | 0 - 10% of decharged fine | 10 - 25 % of dactor ped for | 25 - 50% of discharged flow | 50 - 75% of destroyed fine | 75% - of decharged flow | | | | nd Floatables | few with tio SSF pagazin. | terroral | PRITICIPAL | removal | SAF control device. 0 - 10% of flow with no SAF removed | his charge in S&F remove | Yeared with positive SEF
removal (screens) | tracted with positive SAF
(amount (screens) | Penind with positive SEF
removel (screens) | treated with positive S&F | removal (screens) | his options will provide stranges in SAF Removal | 0 | | | | | | | | | | | | | | | | | 17450 W. S. | | | | | | | The state of s | Annahari Bar | AND TO SHARE THE | 2000 | | | | | Aesthetics - Odor
and Air Emissions | Create envoying oder source
effecting > 20 contenues often | effecting +20 outlaners ofter | Crette arraying other south infecting +35 customers recessoratly | Create detectable only source
affecting + 50 customers when | Create detectable spor
source affecting + 50 | Na impact on sales. | Eliminate detectable odor
source affecting + 50 | Eliminate detectable odor
source affecting = 50 | Elicanete suncyting odor source
affecting <20 contement | e (Brende arraying othe south
effecting +20 customers often,
or +20 customers accessively | Eliminate annoying odor
source effecting +20 | Offer will be stimulated from all enwittenes along Johan interceptor being elemented.
Treatment Plant outpre will be reduced due to each reduction and plant upgrades. New
tectation for potential mover planage and pump indoors attacking potential. | | | | | # 120 success scottored |
f, seconorally | | customers accessorably | | customers recurrently | customers often | оскинийу. | or +20-customers economiety | customers often | Incubon for potential mover storage and pump index ataken potential | Continuous reduction of in- | Intermittent restuction of in | essential programme | | | Annual transfer and the second second | Contractor | .1 | | | | | Dissolved Oxygen
Impacts | Reduction of instream DO by 2
mg1 + during enficial Sew period | Continuous restaction of in- | Attent DG of A - 2 right
possible reduction of in- | alream DO 2 mg/l + possible
during nen-critical conditions,
reduction of DO 0 - 2 mg/l during | triermitent reduction of in
streem DO 0 - 2 night processes | Ne DO ingracit | in steam DO 0 - 2 mgd | in as van DO 2 mpt •. | At early DQ 0 - 2 regit. | Continuous improvement of in- | Continuous improvement of
orfices condition in-sites of DC | Phot efficient need restriction may will provide improvement of excitages DO 0 - 2 and 1 | , | | Inpacts | | | streets DO 2 - 4 mg5 ituring
unifical constitute. | reduction of DO 0 - 2 mgf during
orthogo conditions | during non-critical conditions | | mereum CO 0 - 2 mgs | internations critical condition
improvements 0 - 2 mg/l | ingrovements 3-4 mg1 | streen DO 2 mg1 • | 2 mgt + | | | | | | | | | | | | | 1 | | | l I | | | Downstream | | | | 10 - 25% recrease transpar | Potential 8 - 10 % pursuance in | | | | 25 - 50% reduction in words | 50 - 75% reduction in around | Titler reduction in annual | | | | Downstream
Impacts | 75% recrease in arount ECO or GUNERO leads | 50 - 75% increase in enrice!
BOD or nutrient heads. | 25 - 50% increases in anyone
800 or nutrient loads | 800 or nutries treds (CSO +
nutries) | arrust everage \$00 or
putient loads (CBC + nunef) | No impact on 800 or nutrie
loads (CSO + runoff) | SOO or nutrient freets (CSC | 800 or natives leads (CSO | 33 - 50% reduction in arount
800 or nutrient losses (CSO -
runol) | SOD or nutrient leads (CSO - | 500 or nutrient leads (CSO) | Improved capture and treatment of SSOs will provide 0 - 10 to reduction in annual BCO or nutrient tests (BSO - number) operate sens of Jefferson County | 1 | | Stream Flow | | | | | | and the same | - Januari | · riznak) | rund) | (unaf) | nuvel) | The second secon | | | mpacts (Peak | 20% - norwess in past, Sout. | 20% - 20% recreme in peak. | Up in 10% increase in post | Frequent increase in fige dums
critical conditions. | Possible increase in everage
Now or never increase in high | No report on past fows | Moor reduction in flows - in | Miner reduction in peak. Sows under some condition | Up to 10% reduction in page. | 10% - 25% reduction in peak | 200 reduction in case bu- | Firm posts to be reduced due to partial diversion of plant afficent. | 2 | | lows) | | | | trincer conditions. | Son pents | | significant peek reduction | Rows under some condition | fret | Scot | | The party to be reported by a special or party and part | * | | | | | | | | | | | | | | | | | Stream Flow
Impacts (DWF only | 25%+ decrease in few during | 10% - 25% decrease in flow
during critical conditions. | o flow sharing critical | Frequent decrease in flow during
ordinal conditions | Possible decrease in everage | Ne impact on everage or | presentant incresse in | Street for - other increve | D - 10% permanent increase in
atream fine during critical | n steam few during critical | 2014* permanent increase in
all semi few during critical | Date for substantially reduced | -2 | | impacts (LIVI) only | A Crace continues. | during critical contrastric | conditions | Committee Chesolithics | Sow | trans alream Spe | critical conditions | critical conditions | conditions | conditions | conditions. | | - | | | | | | | | | | | | | | | | | instructions: (1.) Si | core each atternative for atternative in this value. | each of the seven sope | ets of the value. Score | es can be positive or neg | etive, depending on the | impact of the altern | stive on the value. (2.) | Total the scores for as | sch aspect to get the | | Fastel | Raw Score Calculated | | | lotal score for this | affarmative in this value. | (3.) Sheded area repres | ents "fatal flaw". Alten | natives that score in this | eres should not be pro | posed. | | | | | 1000 | naw score Carculated | 3 | | | | | | | | | In the second | oworene | | | T | ital Score (Default) | - | | Aspect | Rationale | | | | | | Measurement N | Method | | | | nai seria (carant) | 2 | | | | | | | | | Decine deficition con- | specifically address chi | | | | | | | Aquatic and | Wet weather projects may | y affect both aquatic and | terrestrial habitat throug | h changes in base flow, pe | ak flow, water quality, to | ne cover, channel | and configuration, tree | cover etc. Predictive i | models will address DO | Note: The total acres of | to stated may be seen | than 25. In the instances where this might occur, a default maxi- | | | Terestrial Habitat | changes, arosion impacts | etc. Predictive models
etc., so surrogate metri | used to evaluate wet we
ca must be used to estin | nether control measures he
nete future positive and ne | we a limited ability to pre-
onlive impacts. | dict biological diversity | and other water quality
and peak flow rates to | y impacts. Flow models
allow estimates of cha- | will predict base flow
noss in erosion and water | calculated. | ncomed may be more | man 20. In the meanices where this hoghi occur, a deraon maxis | mum score or 25 wi | | N. S. | The second second second | | | - | | | surface area. | | MILES CONTRACTOR | La Contraction | -0.00 | | | | | | | | | | | consents to contrast out of | | and the second | all sites with control te | stables removal efficien
chnology, Improvemus | oy has been estimated to
to in removal efficiencies | 1 | | | | | | Most CSOs have some for | om of anists and finalehile | and consistent hardfore. Second | Authorities to carbinita cares o | au be exbected with etc. | rening or other | will be entiremented for all | atternatives that add so | creening or other | 1 | | | | | Aesthetics - Solids | Most CSOs have some for
advanced treatment option | ns. Storm water retentio | constructed wetlends. | and other control systems | mey provide solids and | ROBLEDIES FEITSZYBL BS | will be appropriated for an | Andrews to the state of | | 1 | | | | | Aesthetics - Solids
and Floatables | advanced treatment option | ns. Storm water retentio | constructed wetlends. | and other control systems
y, penalty points will be ass | mey provide solids and
essed if this is possible | with any alternative. | advanced treatment to
storm water discharge | chnologies. Where the | streent is proposed for | | | | | | Aesthetics - Solids
and Floatables | advanced treatment option | ns. Storm water retentio | constructed wetlends. | and other control systems
y, penalty points will be as: | may provide solds and
essed if this is possible | with any alternative. | advanced treatment to | chnologies. Where the | streent is proposed for
nated based on published | | | | | | Aesthetics - Solids
and Floatables | advanced treatment option | ns. Storm water retentio | constructed wetlends. | and other control systems
y, penalty points will be ass | may provide solids and
essed if this is possible | with any alternative. | advanced treatment to
storm water discharge | chnologies. Where the | streent is proposed for | | | | | | Aesthetics - Solids
and Floatables | advanced treatment option | ns. Storm water retentio | constructed wetlends. | and other control systems
y, penalty points will be ass | may provide solids and
eased if this is possible | with any alternative. | advanced treatment to
storm water discharge | chnologies. Where the | streent is proposed for | | | | | | Nesthetics - Solids
and Floatables | advenced treatment optionel. While reduction in so | ns. Storm water retentio | in, constructed wetlends,
oval efficiency is not likely | y, penelty points will be ass | essed if this is possible | with any alternative. | advanced treatment to
storm water discharge
removal data. Odor emissions from a | chnologies. Where the
is removals will be estin | streent is proposed for
nated based on published
as can be madeled for | | | | | | Aesthetics - Odor | advenced treatment optionel. While reduction in a | ns. Storm water retentio
olids and floatables remer
can be generated in store | in, constructed wedends,
eval efficiency is not likely
age systems, como stari | y, penelty points will be ass | flat severs. Cries up | with any alternative. | advanced treatment to
storm water discharge
removal data. Odor emissions from sintensity, quality, and gleed of evaluation in | chnologies. Where the
is removals will be esting
sewage handling facilities
sewage handling facilities
sewage handling facilities
and common, and will not
of common, and will not
and common, and will not
to common, and will not
to common, and will not
to common. | streent is proposed for
nated based on published
as can be modeled for
planning purposes this
be done exceed in very | | | | | | end Flostables | advenced treatment optionel. While reduction in a | ns. Storm water retention olids and floatables remove
can be generated in storm
the quality of the odor. D | in, constructed wedends,
eval efficiency is not likely
age systems, como stari | y, penelty points will be ass | flat severs. Cries up | with any alternative. | advanced treatment le
storm water discharge
terricival data. Odor emissions from s
intensity, quality, and g
level of evaluation is
or
rare sixcurrentances. | chnologies. Where the
is recovals will be esting
sewage handling facilities
segraphic spread. For
of common, and will not
he potential for odor an | street is proposed for
nated based on published
as can be madeled for
planning purposes this
be done except in very
if all minimum will be | | | | | | end Flostables | advenced treatment optionel. While reduction in a
Ordina and air emissions of
by both the intensity and to | ns. Storm water retention olids and floatables remove
can be generated in storm
the quality of the odor. D | in, constructed wedends,
eval efficiency is not likely
age systems, como stari | y, penelty points will be ass | flat severs. Cries up | with any alternative. | advanced treatment le
storm water discharge
removal data. Odor emissions from s
intensity, quality, and s
level of evaluation is no
rare circumstances. T
estimated based on ty | chnologies. Where the
is removals will be esting
sewage handling facilities
sewage handling facilities
sewage handling facilities
and common, and will not
of common, and will not
and common, and will not
to common, and will not
to common, and will not
to common. | streent is proposed for
nated based on publisher
s can be modeled for
planning purposes this
be done except in very
d air arrisasions will be
odel predictions for | | | | | | end Flostables | advenced treatment optionel. While reduction in a
Ordina and air emissions of
by both the intensity and to | ns. Storm water retention olids and floatables remove
can be generated in storm
the quality of the odor. D | in, constructed wedends,
eval efficiency is not likely
age systems, como stari | y, penelty points will be ass | flat severs. Cries up | with any alternative. | advanced treatment le
storm water discharge
removal data. Odor emissions from s
intensity, quality, and s
level of evaluation is no
rare circumstances. T
estimated based on ty | chnologies. Where the
is recrovals will be esting
sewage handling facilities
securable spread. For
all contrains, and will not
he potential for odor an
pical applications and in
pical applications and in
the potential or odor an
pical applications and
the applications and
the potential pical applications and
the potential applications and
the potential applications are the potential applications and
the potential applications are the potential applications and
the potential applications are the potential applications and the potential applications are | streent is proposed for
nated based on publisher
s can be modeled for
planning purposes this
be done except in very
d air arrisasions will be
odel predictions for | | | | | | Aesthetics - Odor | advenced treatment optionel. While reduction in a
Ordina and air emissions of
by both the intensity and to | ns. Storm water retention olids and floatables remove
can be generated in storm
the quality of the odor. D | in, constructed wedends,
eval efficiency is not likely
age systems, como stari | y, penelty points will be ass | flat severs. Cries up | with any alternative. | advanced treatment le
storm water discharge
removal data. Odor emissions from s
intensity, quality, and s
level of evaluation is no
rare circumstances. T
estimated based on ty | chnologies. Where the
is recrovals will be esting
sewage handling facilities
securable spread. For
all contrains, and will not
he potential for odor an
pical applications and in
pical applications and in
the potential or odor an
pical applications and
the applications and
the potential pical applications and
the potential applications and
the potential applications are the potential applications and
the potential applications are the potential applications and
the potential applications are the potential applications and the potential applications are | streent is proposed for
nated based on publisher
s can be modeled for
planning purposes this
be done except in very
d air arrisasions will be
odel predictions for | | | | | | and Fiostables Aesthetics - Older and Air Emissions | advenced treatment optionel. While reduction in a
Ordina and air emissions of
by both the intensity and to | ns. Storm water retention olids and floatables remove
can be generated in storm
the quality of the odor. D | in, constructed wedends,
eval efficiency is not likely
age systems, como stari | y, penelty points will be ass | flat severs. Cries up | with any alternative. | advanced freatment is
storm water discharge
removal data. Odor emissions from a
stressift, quality, and a
level of evaluation is or
exercitoruntacions. T
estimated based on by
storage time, number of | chnologies. Where the
s renovals will be estin
the service of the service
several predictions of the
several predictions and will not
be potential for older an
prical applications and
of events, everage flow. | street a proposed for
nated based on publishes
as can be madeled for
planning purposes this
be done except in very
at air emission will be
odel predictions for
velocities etc. | | | | | | Assthetics - Odor
and Air Emissions | advanced treatment optioned. While reduction in si United the reduction in si Didors and air emissions, by both the risersal and if from sewage handing fac- | car. Starm water retention of the starm water water to be generated by store the quality of the odor. Displace. | in, constructed wetlands,
inval efficiency is not likely
age systems, pump stati
enectable and annoying i | , penalty points will be ass
with the second second second
core, force mains, and long
core two common descripto | essed if this is possible in the several process of different intensities and different intensities. | with any alternative. generally characterized and qualities of odors. | advanced freatment is
storm water discharge
removal data. Oder ernisaloss from a
retensity, quality, and it
water advantage and a
reter of countries on a
storage time, number of
the properties of the
for BGC the Weler Os
of various knoding con- | chnologies. Where the
is removals will be estimated
in the second of the second of
second of the second of
second of the second of
second of the
second of
second of
second
second of
second of
second of
second of
second of
second
second of
second of
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second | street is proposed for
varied based on published
as can be modeled for
planning purposes the
be done except in very
at air ensistants will be
odel particisions for
velocities etc. | | | | | | Assthetics - Oldor
and Air Emissions | advanced treatment optioned. While reduction in si United the reduction in si Didors and air emissions, by both the risersal and if from sewage handing fac- | car. Starm water retention of the starm water water to be generated by store the quality of the odor. Displace. | in, constructed wetlands,
inval efficiency is not likely
age systems, pump stati
enectable and annoying i | y, penelty points will be ass | essed if this is possible in the several process of different intensities and different intensities. | with any alternative. generally characterized and qualities of odors. | edvanced treatment for
storm water discharge
removal data. Odor emissions from sintensity, quality, and
level of evaluating, quality, and
level of evaluations are rare occumstances. It
estimated beare sistemated beare sis-
stimated beare produced in
storage firms, number of
the produced of the storage of the
proposal of the sistemated beare in
proposal of individual products and individual
impacts of individual proposal or individual pro-
torage for the sistemate of the sistemate of the
impacts of individual proposal or individual pro-
torage for the sistemate of the sistemate of the sistemate of the
impacts of individual proposal or individual pro-
torage of the sistemate of the sistemate of the sistemate of the
individual proposal or individual pro-
torage of the sistemate of the sistemate of the sistemate of the
individual proposal or individual pro-
torage of the sistemate of the sistemate of the sistemate of the
individual proposal or individual pro-
torage of the sistemate of the sistemate of the sistemate of the
individual proposal or individual pro-
torage of the sistemate of the sistemate of the
sistemate of the
individual proposal or individual pro-
torage of the sistemate of the sistemate of the sistemate of the
individual proposal or individual pro-
torage of the sistemate of the sistemate of the sistemate of the
individual proposal or individual pro-
torage of the sistemate of the
individual proposal or individual pro-
torage of the sistemate t | chnologies. Where treat
is removals will be estimated
and the state of the state of the state
energy handling facilities
prographic spread. For
the potential for odor an
include application of
the potential for odor an
include application of
and of events, average flow
wally Tool will be used to
filtions, flows, temperature
projects will be estimated
or
potential projects will be estimated
or
projects estimated
or
projects
or
projects
or
projec | street is proposed for
varied based on published
as can be modeled for
planning purposes the
be done except in very
at air ensistants will be
odel particisions for
velocities etc. | | | | | | Assthetics - Oldor
and Air Emissions | advanced treatment optioned. While reduction in si United the reduction in si Didors and air emissions, by both the risersal and if from sewage handing fac- | car. Starm water retention of the starm water water to be generated by store the quality of the odor. Displace. | in, constructed wetlands,
inval efficiency is not likely
age systems, pump stati
enectable and annoying i | , penalty points will be ass
with the second second second
core, force mains, and long
core two common descripto | essed if this is possible in the several process of different intensities and different intensities. | with any alternative. generally characterized and qualities of odors. | advanced freatment is
storm water discharge
removal data. Oder ernisaloss from a
retensity, quality, and it
water advantage and a
reter of countries on a
storage time, number of
the properties of the
for BGC the Weler Os
of various knoding con- | chnologies. Where treat
is removals will be estimated
and the state of the state of the state
energy handling facilities
prographic spread. For
the potential for odor an
include application of
the potential for odor an
include application of
and of events, average flow
wally Tool will be used to
filtions, flows, temperature
projects will be estimated
or
potential projects will be estimated
or
projects estimated
or
projects
or
projects
or
projec | street is proposed for
varied based on published
as can be modeled for
planning purposes the
be done except in very
at air ensistants will be
odel particisions for
velocities etc. | | | | | | and Fiostables Aesthetics - Older and Air Emissions | and encode to seathered optioned. While restriction in a seathered with the seathered option and all emissions by both the sienally and from sewage handling fac. Dissolved orygen in stream | ns. Storm water retendent
clids and floatables reme
can be generated in store
the quality of the odor. D
dries. | in, constructed wetlands, vival efficiency is not likely age systems, pump staff sta | r, pennetly points will be ass
one, force mains, and long
are two common descripto
are two common descripto | exced if this is possible in the property of the property of different intensions of different intensions. | generally characterized and qualifies of odors | edvanced treatment for
storm water discharge
removal data. Odor emissions from sintensity, quality, and
level of evaluating, quality, and
level of evaluations are rare occumstances. It
estimated beare sistemated beare sis-
stimated beare produced in
storage firms, number of
the produced of the storage of the
proposal of the sistemated beare in
proposal of individual products and individual
impacts of individual proposal or individual pro-
torage for the sistemate of the sistemate of the
impacts of individual proposal or individual pro-
torage for the sistemate of the sistemate of the sistemate of the
impacts of individual proposal or individual pro-
torage of the sistemate of the sistemate of the sistemate of the
individual proposal or individual pro-
torage of the sistemate of the sistemate of the sistemate of the
individual proposal or individual pro-
torage of the sistemate of the sistemate of the sistemate of the
individual proposal or individual pro-
torage of the sistemate of the sistemate of the sistemate of the
individual proposal or individual pro-
torage of the sistemate of the sistemate of the sistemate of the
individual proposal or individual pro-
torage of the sistemate of the sistemate of the sistemate of the
individual proposal or individual pro-
torage of the sistemate of the sistemate of the sistemate of the
individual proposal or individual pro-
torage of the sistemate of the
individual proposal or individual pro-
torage of the sistemate t | chnologies. Where treat
is removals will be estimated
and the state of the state of the state
energy handling facilities
prographic spread. For
the potential for odor an
include application of
the potential for odor an
include application of
and of events, average flow
wally Tool will be used to
filtions, flows, temperature
projects will be estimated
or
potential projects will be estimated
or
projects estimated
or
projects
or
projects
or
projec | street is proposed for
varied based on published
as can be modeled for
planning purposes the
be done except in very
at air ensistants will be
odel particisions for
velocities etc. | | | | | | enthetics - Odor
nd Air Emissions
issolved Oxygen
spects | and evenue to seathward option with While restriction in a seathward with the w | ns. Storm water retentioning and Rodataless reme
can be generated in storm
be quality of the odor. D
storm is dependent on a ve-
ums is dependent on a ve-
tro conditions in the Ohio | in, constructed wetlands,
wall efficiency is not likely
age systems, pump start
electable and annoying is
rietly of factors including
in River below. Jefferson. | ons, force mains, and long
ons, force mains, and long
one been common descriptor
BOO load, nutrient load, st | enseed if this is possible in the property of | with any alternative. generally characterized and qualities of odors remperature, etc. | advanced treatment
storm wester forcharge
removal data. Odor emissions from
intensity, quality, and
level of evaluation is
reserved excursions in
reserved commissions
from
the contraction of
storage time, number
of various bading cond
proper time, number
to
the various storm
post of
the various storm
poliutant removals will
poliutant poliutant poliuta | chnologies. Where the
is removals will be estimated
energy handling facilities
prographic spread. For
common, and will not
be polarized for other
polarized for other
polarized for other
polarized for other
polarized for
titles, fives, temperature
projects will be estimated
onefficies are
policities of the
policities of the
policities of
policities | streent is proposed for
marked based on publisher
is can be madeled for
planning purposes this
be done except in very
dist emissions will be
odel predictions for
whoches etc. | | | | | | nesthetics - Odor
nd Air Emissions
issolved Oxygen
spects | and evenue to seathward option with While restriction in a seathward with the w | ns. Storm water retendent
clids and Rodalales rere-
can be generated in store
the quality of the odor. D
Bries. To conditions in the Ohio
to conditions in the Ohio | in, constructed wetlands, val efficiency is not likely against the state of sta | r, pennetly points will be ass
one, force mains, and long
are two common descripto
are two common descripto | enseed if this is possible in the property of | with any alternative. generally characterized and qualities of odors remperature, etc. | advanced treatment
storm wester forcharge
removal data. Odor emissions from
intensity, quality, and
level of evaluation is
reserved excursions in
reserved commissions
from
the contraction of
storage time, number
of various bading cond
proper time, number
to
the various storm
post of
the various storm
poliutant removals will
poliutant poliutant poliuta | chnologies. Where the
removals will be estimated
to removals will be estimated
to common, and will not
of common, and will not
be potential for odor an
pictal applications and
in devents, average flow
which is a superior
solid to the common
pictal supplications and
in devents, average flow
which is a superior
solid to the common
pictal supplications
and
which is
solid
pictal
superior
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
solid
so | streent is proposed for
marked based on publisher
is can be madeled for
planning purposes this
be done except in very
dist emissions will be
odel predictions for
whoches etc. | | | | | | iesthetics - Odor
nd Air Emissions
issolved Oxygen
npacts | and encount option will. While restriction in a service of the ser | ns. Storm water retendent
clids and Rodalales rere-
can be generated in store
the quality of the odor. D
Bries. To conditions in the Ohio
to conditions in the Ohio | in, constructed wetlands, val efficiency is not likely against the state of sta | ons, force mains, and long
ons, force mains, and long
one been common descriptor
BOO load, nutrient load, st | enseed if this is possible in the property of | with any alternative. generally characterized and qualities of odors remperature, etc. | advanced braitmet is
storm voter discharge
removal data. Odor emissions from substantial
voter discharge is
voterable in the substantial
benefit of entherition is
storage firms, number of
voterable is to the voterable of the
production should be substantial benefit
for BOC the Water On
of various should not the various stream. Politant removals will
were got the substantial benefit of the various stream. | chnologies. Where the
is removals will be estimated
energy handling facilities
prographic spread. For
common, and will not
be polarized for other
polarized for other
polarized for other
polarized for other
polarized for
titles, fives, temperature
projects will be estimated
onefficies are
policities of the
policities of the
policities of
policities | streent is proposed for
marked based on publisher
is can be madeled for
planning purposes this
be done except in very
dist emissions will be
odel predictions for
whoches etc. | | | | | | md Floatables settletics - Odor and Air Emissions issolved Oxygen specia ownstraam | and executed spatients optioned. While restriction in a service of the | on. Sorrin water retendents and Rodataless rere- can be generated in stor- the quality of the odor. D arms is dependent on a ve v to conditions in the Ohic to of the total to the deliveroid inspects where deliveroid inspects | in, constructed wetlands,
wall efficiency is not likely
age systems, pump statis
effectable and emorphy
which is a second of the
will be a second of
the pump of the
second of the
second of
the
second of
second of
second of
second of
second of
second of
second of
second of
second of
second of
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
secon | r, pennelly points will be ass
one, force makes, and long
are two common descripto
BOO load, nultiwel load, at
ECOUNTY, Nultiwell loadings is
the Out of Messen. BOO | exceed if this is possible in the property of | generally characterized and qualities of odors temperature, etc. | advanced treatment actions were decharge removal data. Odor emissions from intensity, quality, and level of evaluation as reasonable actions are accommission as reasonable actions as reasonable actions and actions actions and actions actions actions actions and actions act | chnologies. Where the
is removals will be estimated
removals removals
removals removals
removals removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
remov | streed is proposed for
varieties
and on published
in can be madeled for
planning purposes this
be done except in very
date emissions will be
odel predictions for
vehocities etc.
exceptions of
probable
sections for
vehocities etc. | | | | | | nd Floatables estitutios - Odor nd Air Emissions issolved Oxygen specis ownstraam specis traum Flow specis (Pask | and executed specification in a set with the set of | ns. Storm water retendents and Rodalales revenue and Rodalales. To conditions in the Ohio to conditions in the Ohio to conditions in the Ohio to conditions and Rodalales and Rodalales revenue and Rodalales R | in, constructed wetlands,
was efficiency is not likely
age systems, pump state
specifications, state
spec | ons, force mains, and long
ons, force mains, and long
one been common descriptor
BOO load, nutrient load, st | exceed if this is possible in the property of | generally characterized and qualities of odors temperature, etc. | advanced bratimet is
storm water descharge
removal data. Odor ermiskens from television of
the storm of the storm of the
west of evaluating, such is
west of evaluating, such is
west of evaluating of the
race stormetances. It
satisfies the stormetances of the
stormetances the
storme | chnologies. Where the
removals will be active
removals will be active
removals by the
removals of the
removals of the
removals of the
removals of the
removals of
removals of
rem | stream is proposed for
marked based on published
as can be modeled for
becoming sense to
be provided by the published
provided by the published
provided provided by
all at artistations will be
oded provided for
at a straight series
as astimulas the impacts
rest, atc. Probable
hased on comparisons
productions in annual
are primarily long-term
scalar from individual
scalar | | | | | | md Floatables leathetics - Odor and All Emissions lissolved Caygen pacts ownstraam pacts tiveum Flow pacts (Pask | and executed spatients optioned. While restriction in a service of the | ns. Storm water retendents and Rodalales revenue and Rodalales. To conditions in the Ohio to conditions in the Ohio to conditions in the Ohio to conditions and Rodalales and Rodalales revenue and Rodalales R | in, constructed wetlands,
was efficiency is not likely
age systems, pump state
specifications, state
spec | r, pennelly points will be ass
one, force makes, and long
are two common descripto
BOO load, nultiwel load, at
ECOUNTY, Nultiwell loadings is
the Out of Messen. BOO | exceed if this is possible in the property of | generally characterized and qualities of odors temperature, etc. | advanced bratimet is
storm water descharge
removal data. Odor ermiskens from television of
the storm of the storm of the
west of evaluating, such is
west of evaluating, such is
west of evaluating of the
race stormetances. It
satisfies the stormetances of the
stormetances the
storme | chnologies. Where the
is removals will be estimated
removals removals
removals removals
removals removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
remov | stream is proposed for
marked based on published
as can be modeled for
becoming sense to
be provided by the published
provided by the published
provided provided by
all at artistations will be
oded provided for
at a straight series
as astimulas the impacts
rest, atc. Probable
hased on comparisons
productions in annual
are primarily long-term
scalar from individual
scalar | | | | | | nd Floatables iesthetics - Odor nd Air Emissions | and executed specification in a set with the set of | ns. Storm water retendents and Rodalales revenue and Rodalales. To conditions in the Ohio to conditions in the Ohio to conditions in the Ohio to conditions and Rodalales and Rodalales revenue and Rodalales R | in, constructed wetlands,
was efficiency is not likely
age systems, pump state
specifications, state
spec | r, pennelly points will be ass
one, force makes, and long
are two common descripto
BOO load, nultiwel load, at
ECOUNTY, Nultiwell loadings is
the Out of Messen. BOO | exceed if this is possible in the property of | generally characterized and qualities of odors temperature, etc. | advanced bratimet is
storm water descharge
removal data. Odor ermiskens from television of
the storm of the storm of the
west of evaluating, such is
west of evaluating, such is
west of evaluating of the
race stormetances. It
satisfies the stormetances of the
stormetances the
storme | chnologies. Where the
removals will be active
removals will be active
removals by the
removals of the
removals of the
removals of the
removals of the
removals of
removals of
rem | stream is proposed for
marked based on published
as can be modeled for
becoming sense in the
periodic periodic published
to be proposed in the
periodic periodic periodic
at a entitation of the
observations of the
extension of
extension of
extens | | | | | | md Floatables sesthatics - Odor nd Air Endasions lissolved Oxygen ownstream ownstream pacts treen Flow upperts (fleek | and encount of the service se | ns. Starro mester retendenticides and Rodataless reverse and Rodataless reverse and Rodataless reverse and Rodataless reverse and Rodataless | in, constructed wetlands,
wall efficiency is not likely
age systems, pump state
age systems, pump state
selectable and annoying in
which is a selectable and annoying in
rively of factors including
in River below. Jefferson
all husberts buildings and
likely before
all husberts buildings
for downings. | r, pennetly points will be ass
ons, force mains, and long
are two convenue descripto
BOO load, nutrient load, st
County, Nutrient loadings of
the Out of Mexico. BOO
wheel can erode the stream | flat severs. Odors are so of offerent intensives. That severs. Odors are so of offerent intensives. The Chie (not just Jeffer to not likely to persist in the Chie (not just Jeffer to not likely to persist in the chief of the odors, | generally characterized and questions of adors of adors of adors of adors of adors of femperature, etc. | advanced bratimet is
storm water discharge
removal data. Odor emissions from submission, quality, and several
values of the submission of the submission of the
submission of the submission of the submission of the
submission of the submission of the submission of the
submission of the submission of the submission of the
production stream. Pollutant removals will submission of the
watergas bads, since 8 and currulative. Predictive models can
sources, and the Water
output of the submission of the submission of the
submission the submission of the
submission of the submission of the submission of the submission of the submission of the
submission of | chnologies. Where the
removals will be estimated
removals removals
removals removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals
removals | stream is proposed for
varieties and the second of
second in the second of
second of
second
second of
second of
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second
second | | | | | | destination - Odor of Air Emissions of Air Emissions of Air Emissions ownstream pacts ownstream pacts ownstream pacts of the Air Odor of A | and executed to seather and one well. While restriction in si United the seather and seat | ns. Starro mester retendenticides and Rodataless reverse and Rodataless reverse and Rodataless reverse and Rodataless reverse and Rodataless | in, constructed wetlands, wall efficiency is not likely age systems, pump state and emorphing in the state of the systems and emorphing in River below Jefferson of an unifered loads reaching fair downwise. | ons, force mains, and long
ons, force mains, and long
are less common descriptor. BOO load, nutrient load, st. County, Nutrient load, st. County, Nutrient load, st. County, Nutrient load, st. County, Nutrient load, st. County and Mexico. BOO shed can enduce the stream | flat severs. Odors are so of offerent intensives. That severs. Odors are so of offerent intensives. The Chie (not just Jeffer to not likely to persist in the Chie (not just Jeffer to not likely to persist in the chief of the odors, | generally characterized and qualifies of odors odors of od | advanced brattmeth actions assistant water discharge removal data. Odor emissions from selection of the control individuals placed to the various shades to the various shades to the various shades of individuals the control | chnologies. Where the
services is removally will be estimated
to the common and will not
common, and will not
common, and will not
common, and will not
common, and will not
common and common and
different services and
common and
common
common and
common and
common and
common and
common and | stream is proposed for published based on published as can be madeled for plenning purposes his proposed for plenning purposes his published as a can be madeled for plenning purposes his published for the purpose his published published for all be satisfactors for velocities etc. It is attitude the impacts res., etc. Probable based on comparisons are primarily brighter and purposed for primarily brighters in annual are primarily brighters his primarily brighters from individual saudic component to another. | | | | | | asthetics - Odor and Air Emissions assolved Oxygen pacts rematrase pacts from | and executed to seather and one well. While restriction in si United the seather and seat | on. Storm water retendents of the storm t | in, constructed wetlands, wall efficiency is not likely age systems, pump state and emorphing in the state of the systems and emorphing in River below Jefferson of an unifered loads reaching fair downwise. | ons, force mains, and long
ons, force mains, and long
are less common descriptor. BOO load, nutrient load, st. County, Nutrient load, st. County, Nutrient load, st. County, Nutrient load, st. County, Nutrient load, st. County and Mexico. BOO shed can enduce the stream | flat severs. Odors are so of offerent intensives. That severs. Odors are so of offerent intensives. The Chie (not just Jeffer to not likely to persist in the Chie (not just Jeffer to not likely to persist in the chief of the odors, | generally characterized and qualifies of odors odors of od | advanced bratteret is
storm wester discharge
removal dista. Odor ermiskents from volennik, spelify, self is
west of exclusion, spelify, self is
west of exclusion, spelify is
stormetable self in the self is
self in the self is self in the self is
self in the self is self in the self is
self in the self is self in the self in the
self in the self is self in the self is
self in the self in the self is self in the
self in the self is self in the self in the
self in the self in the self in the self in the
self in the self in the self in the self in the
self in the self in the self in the self in the
self in the self in the self in the self in the self in the
self in the self in the self in the self in the self in the
self in the self in the self in the self in the self in the
self in the self in the self in the self in the self in the
self in the self in the self in the self in the self in the
self in the self in the
self in the self in the
self in the self | chnologies. Where the
services is removally will be estimated
to the common and will not
common, and will not
common, and will not
common, and will not
common, and will not
common and common and
different services and
common and
common
common and
common and
common and
common and
common and | stream is proposed for published based on published as can be madeled for plenning purposes his proposed for plenning purposes his published as a can be madeled for plenning purposes his published for the purpose his published published for all be satisfactors for velocities etc. It is attitude the impacts res., etc. Probable based on comparisons are primarily brighter and purposed for primarily brighters in annual are primarily brighters his primarily brighters from individual saudic component to another. | | | | | | asthetics - Odor asthetics - Odor of Air Emissions ssolved Oxygen pacts remarkase pacts remarkase pacts (Pesk) | and encount options. While reduction in a service with the service of servic | on. Storm water retendents of the storm t | in, constructed wetlands, wall efficiency is not likely age systems, pump state and emorphing in the state of the systems and emorphing in River below Jefferson of an unifered loads reaching fair downwise. | ons, force mains, and long
ons, force mains, and long
are less common descriptor. BOO load, nutrient load, st. County, Nutrient load, st. County, Nutrient load, st. County, Nutrient load, st. County, Nutrient load, st. County and Mexico. BOO shed can enduce the stream | flat severs. Odors are so of offerent intensives. That severs. Odors are so of offerent intensives. The Chie (not just Jeffer to not likely to persist in the Chie (not
just Jeffer to not likely to persist in the chief of the odors, | generally characterized and qualifies of odors odors of od | advanced brattmeth actions assistant water discharge removal data. Odor emissions from selection of the control individuals placed to the various shades to the various shades to the various shades of individuals the control | chnologies. Where the
services is removally will be estimated
to the common and will not
common, and will not
common, and will not
common, and will not
common, and will not
common and common and
different services and
common and
common
common and
common and
common and
common and
common and | stream is proposed for published based on published as can be madeled for plenning purposes his proposed for plenning purposes his published as a can be madeled for plenning purposes his published for the purpose his published published for all be satisfactors for velocities etc. It is attitude the impacts res., etc. Probable based on comparisons are primarily brighter and purposed for primarily brighters in annual are primarily brighters his primarily brighters from individual saudic component to another. | | | | | | Pro | oject #1 | LH. | | | | | S | JT JT N | IB01A 03 | C | | | | |--|--|---|---|---|--|---|---|---|---|---|--|---|---------------------------------| | Value: | Environmental E | nhancement | | | | | | | | _ | | | | | Aspect | -5 | - | 1 | -2 | 1 -1 | 0 | Soc | ring | 1 3 | | 1 4 1 | Assumptions | Score Per Aspect | | Aquatic and
Torestrial Habitat | Elementary of habitat he care of | Commander of arginificant | December of many way on | Services testing in an exercise | Minor impaisment to existing | | Mayor enhancement of | Spoken enecessor of | Creator of more amount of | Creation of aignificant amount | Creation of critical habitanter | Pasteriganus | acute ret Aspect | | Protection | entarge et species | writing of community helical | all investors features | DESCRIPTION DESCRIPTION | | | existing habital | emiting habital | common habited | of common habital | rare or entangered species | | | | Asstructics - Solids
and Floatables | 75%- reduction in volume of
flow with no DEF cophura | 50 - 75% of fine with no SAF
temoval | 29 - 80% of Sent with no SSZ
removal | 10 - 25% of flow with no BAF
removal | Reduces efficiency of easter
SAF control stevice. 0 - 10%
of fine with no SAF computer | No change is SSF remove | 0 - 10% of decharged flow
travial with positive SAF
removal (screens) | 10 - 25 % of dacharged for
treated with pusitive SSF
rangest (screens) | 25 - 50% of decharged five
tracked with positive DSF
removal (screens) | SQ - 75% of docturged flow
3 usted with positive SAF
(winoval screens) | 75% - of decharged Sow
9 nated with positive SSF
removal (screens) | | | | Aesthetics - Odor
and Air Emissions | Create arroying oder source
effecting + 20 outsimes when | Create annoying sider siture
effecting <20 toxonwers often
or > 20 toxonwers occurred | Credin annuying lidar source
shacing +20 customers
stronomety | Create detectable oder approx
effecting > 50 pussement after | Oresis desociativa odor
soutra affecting + 50
customers occasionally | No impact on adore | Elementa delectable other
source effecting + 50
collisioners occasionally | (3mmain detactable infor
nounce affecting = 50
nucleomers other | Elevan swojeg oder souts
affecting 420 stationers
sociationally | Eliminate servoying oder source
effecting +25 customers often
or +25 customers occasional | e Eliminate arrusping otto
empre effecting -22
y coatemers often | | | | Dissolved Oxygen
Impacts | Reduction of an area in DO by angle 4 during afficial flow parties | Continuous reduction of in-
sansian DC-oC2 (ng/) = | Continuous reduction of in-
sistems DC of B - 2 mg/,
presenting reduction of in-
sistems DC 2 - 4 mg/s fairing
to facul constitute. | bitemitiant induction of in
streem DO2 right investiga-
during ten-critical conditions,
relaction of DO 0 - 2 mg/l durin
critical conditions. | triamatient reduction of an
stream DO 0 - 2 mg/ possible
gliveing transcritical conditions | No DO equada | Intermittent improvement of
in-szeem DO 5 - 2 mg/l | toleroither's ingruinement or
measure DO 2 mg/s -
measurables of clicked condition
ingrowmants D - 2 mg/s | Continuous improvement of in
atheir DO P-2 rings,
interesting official continuo
improvements 3-4 rings | Otrahusus angulawanend of all
obvious DO 2 mg8 = | Gardenman Ingrovement of orficel condition in stream DO 2 mgf + | | | | Downstream
Impacts | 25% increme in service 800 or outlier trads | 50 - 75°s ingresse in smorel
800 or nutrationals | 25 - 50% increase to arrest
BCC or restant leads | 10 - 25% increase in annual
800 or number leads (CSO +
surefy | Principal D- 12 % explaine in
strough sowings 800 or
nutries leads (CSO + sunoff) | has impact on BCD or reafter
leads (CBC + name?) | C - 10% reduction in annual
8000 or nutrient leads (CBC
+ stands) | 10 - 20% reduction in arrea
600 or relinent leads (CSC
+ riesaft) | 25 - 50% reduction in annual
SOD or nutrient trade (CSO +
number) | SC - 75% reduction in arroad
BCD or nutrient tools (CSC -
tunol) | 70% reduction in armust
800 or nutrient leads (CSO =
runst) | | | | Stream Flow
Impacts (Peak
flows) | 25% - Annesse in peak flows | 10% - 25% normens in peak
from | Cip to 10% increases to peak from: | Prequest retreate is fine duri
critical conditions | Promitive increase at energy
Now, at more increase in high
New years. | his report on poss hows | Minor reduction in times - in
significant peak reduction | Morpe reduction in peak.
None under some condition | Lip to 10% reduction in peak
Since | 10% - 25% reduction is peek
firms | 20% reduction in past flows | | | | Streem Flow
Impacts (DWF only) | 25he decrease in few during
critical conditions. | 10% - 25% dacressa in line
during critical conditions | 0-10% permaneni decresse
in fine during critical
conditions | Frequent decrease in flow during critical conditions | Passible decrease in swerage
flow | No krypect on everage or
taken at each flow | interniberd increase to
gream lips - not threat to
critical conditions | triammillant trus ages to
stream flow - offers improve
or their conditions | 0 - 10% parmaneni increase in
atreen fine storing critical
conditions. | 10 - 25 % permanent increase
in obsess flow during critical
conditions | 25% personed no were in
stream five sharing critical
conditions | | | | Instructions: (1.) So
total score for this r | ors each alternative for
elternative in this value. | each of the seven espe
(3.) Shaded area repres | ets of the value. Score | s can be positive or neg
natives that score in this | ative, depending on the
area should not be pro- | s impact of the sitem
sposed. | ative on the value. (2.) | Total the acores for a | sch aspect to get the | | Total F | law Score Calculated | 4 | | Aspect | Rationale | | | | | | Measurement N | Anthod | | | | corrected Score | | | Aquatic and
Terestrial Habitat
Protection | shape and characteristic | sets. Predictive mudels | used to evaluate wat we | h changes in hose films, p
atther control measures h
arts future positive and ne | eve a limited shifty to pre | ee cover, chanyel
dict biological diversity | and configuration, tree | cover etc. Predictive | anges in channel shape
models will editions DO
s will predict base flow
nges in erosion and water | Note: The total score of calculated. | alculated may be more t | over, 25. In the Instances where this might occur, a defe | uff maximum score of 25 will be | | Asstruction - Solids
and Floatables | advanced treatment optic | ns. Storm water retentle | in, constructed wetlands. | venents in capture rates
and other control system
, penalty points will be as | s may provide solids and | floatables removal as | all sites with control to
will be estimated for a
edvenced treatment to | chnology, Improvement
I elternatives that add a
schoologies. Where the | | | | Legal E | | | Assthetics - Odor
and Air Emissions | Odors and air emissions
by both the intensity and
from sewage handling fac | the quality of the odor. D | | ons, force mains, and lon
are two common descripte | | | d intensity, quality, and placed of evaluation is no
rare circumstances. The estimated based on ty | vewage handling facilities
geographic spread. For
of
common, and will not
be potential for odor ar-
pical applications and not events, average flow | planning purposes this
the done except in very
id air emissions will be
radel predictions for | | | | | | Dissolved Oxygen
Impacts | Dissolved asygen in stree | ema is dependent on a ve | every of factors including | BOD load, nutrierd load, r | tream flow velocity, wate | or temperature, etc. | of various loading con | fitions, flows, temperat
rojects will be estimater | to estimate the impacts ures, etc. Probable 6 based on comperisons | | | | - | | Downstruem
Impacts | Downstream impects refe
been identified as the sou
to get to the Gulf, but can | rce of 30 - 45% of the to | tal nutrient loads reachin | County, Nutrient loadings
g the Gulf of Mexico, BOI | in the Ohio (not just Jeffe
) is not likely to persist in | mon County) have
the river long enough | | be estimated based or
he downstream impacts | reductions in annual
are primarily long-term | | | | | | Stream Flow
Impacts (Peak
flows) | Extremently high peak for make water based recrea | es as ere often caused to
tion unsafe or impractica | by urbanization of a water | rshed can erode the stree | mbed, damage aquatic a | nd terrestrial habitat, | | estimate flow peaking!
or Quality Tool has a hy
during various storm e | drawlic component to | | | | | | Stream Flow
Impects (DWF only) | measures such as ground | om a stream due to abar
leater pumping can incre | adonment of a treatment | plant etc. can reduce bas
eficial results. | e Rows in a stream. Alter | matively, other control | | a hydraulic componer | lividual sources, and the | 4 | | | | | Acronyms
8GC - Beargrass Cre
8CO - Biological oxyg
CSO - Combined see | ek
en derrend
er overflow | | DO - Dissolved oxygen
DWF - Dry weather flow
mgt - Milligram per liter | | S&F - Solids and floatet | des | - | | | | | | | | Value: | | | | J | errerson | town Rie | naing E | liminatio | n Evaluat | tion - Alte | ernative | 2 | | |--|--|--|---|---|--|---
--|---|--|--|--|--|----------------| | 10100. | Eco-Friendl | y Solutions | | | | | | | | | | | | | Aspect | -5 | -4 | -3 | -2 | -1 | 0 | S | coring | | | | | | | Non-Renewable
Energy
Consumption | Primary energy
consumption is greate
than secondary
treatment | Primary energy
consumption equal to 75 -
100% of secondary
treatment | Primary energy
consumption equal to 30 -
75% of secondary
treatment | Primary energy
consumption equal to 15
30% of secondary
treatment | Primary energy consumption
equal to 0 - 15% of
secondary treetment | No energy consumption
except for cleaning and
maintenance | Cleaning and maintenance
not needed, no primary
consumption | NA . | MA | NA . | NA S | Assumptions Emergy consumption needed for storage and pump station at the plant. 55% of flow pumped, secondary treatment still required end of pipe. | Score Per Aspe | | Use of Natural
Systems | Constructed facilities
permanently displace
5+ acres wellands or
50% locally available
green space | Constructed facilities
permanently displace 3 - 5
acres wetlands or 25 - 50%
locally available green
space | Constructed facilities
permanently displace 1 - 3
acres wetlands or 10 - 151
locally evallable green
space | | Constructed facilities
temporarily disrupt wetlands
or green space | Alternative does not use or
affect natural systems,
wetlands, or green space | Alternative doesn not use
natural systems, but
enhances green space or
wetland | Natural systems play a mino
role in elternative function,
up to 1 ecre wellend or 10%
additional green space
created | Natural systems are
significant part of alternative
function, 1 - 3 ecres of
wetland created or 10 - 25%
additional green space | Alternative fully uses natural systems, 3 - 5 ecres of welland created or 25-50% editional green space | Alternative results in multi-
use natural system
stavelopment, 5+ acres of
wetland or 50% additional
green space | | 1 | | Multiple-Use
Facilties | Constructed lacities
permanently eliminate
recreational
opportunity | Constructed facilities
significantly impare
recreational opportunity | Constructed facilities
rectanish impare
recreational opportunity | Constructed facilities have
minor impacts on
recreational opportunity | Construction temporarily
impacts recreational
opportunity | No impacts on recreational opportunities | Atternative improves access to existing recreational areas | Alternative has limbed positive impact on recreation | Alternative significantly
enhances recreational
opportunities | Attantative increases
recreational opportunities in
area | Alternative results in multi-
use facility | No change in recreational uses since plant remains in service | o | | Source Control
of subwatershed
collutant loads | Pollutant loadings are
increased by 50% | Polluters loadings are
increased by 30 - 50% | Poliotant kiedings are
increased by 10 - 30% | End of pipe pollutant
loadings are increased by
0 - 10% | End of pipe pollutant
loadings impacts are
inconsistent, but likely higher | End of pipe pollutant loading
are unchanged | Oversion transfers more
at their 25% of pollutant
loadings to less sensitive
receiving water | Olversion transfers more
than 50% of pollutant
loadings to less sensitive
receiving water | Olversion transfers more
than 75% of pollutant
libedings to less sensitive
receiving water | Oversion transfers more
than 90% of pollutant
loadings to less sensitive
receiving water | Diversion transfers more
than 100% of polutant
loadings to less sensitive
receiving water | 56% of pollutant loads transferred to Ohio
River, a less sensitive watershed. | 2 | | Non-Obtrusive
Construction
Fechniques | Permanent loss of
green space or
sensitive area
disruption | Main thoroughfare
closures, sensitive area
temporary disruptions | Widespread dust and
noise, blasting, secondary
street closures | Localized dust, noise and local street closures | Minor dust and noise, traffic lane closures | No construction impacts | NA | NA | NA | NA | NA | Construction would cause localized dust and noise with street closures | -2 | | Consistent Land
Use | Intrusive or huisence
facilities inconsistent
with neighborhood or
lend use. | Facilities reconstitient with
neighborhood or land use. | Facility characteristics
mitigated to reduce impact
on neighborhood | Facilies have significant
impact on development
density or land use | Facility has minor impact on
development density or land
use | No impact on lend use or no
above ground facilities | Attenuative mitigates existing compatibility problem | Alternative removes facility inconsistent with
neighborhood | Alternative ramoves nuisance facility from neighborhood | Alternative enhances
property values in
neighborhood | Alternative provides
enhancements that
significantly improve
neighborhood | Facilities on plant site will be upgraded,
partially mitigating incompetable use of a
treatment facility. | 1
 | mpermeable
Surfaces | S acres + of
impermeable surfaces
are added | 3 - 5 acres of impermeable
surfaces are added | 1 - 3 acres of impermeable
surfaces are added | up to 1 ecre of
impermeable surfaces are
added | Minor increase in
impermeable surfaces
artifed | No change in impermeable surface | Minor reduction in
impermeable surfaces | Up to 1 scre of impermeable surfaces removed | 1 - 3 acres of impermeable
surfaces removed | 3 - 5 acres of impermeable surfaces removed | More than 5 acres of
impermeable surfaces
removed | No change in impermeable surface in all options | O | | EEDS
Performance | NA. | NA | NA. | NA | NA | LEEDS not applicable or
LEEDS score <10 | LEEDS Score 10 - 25 | LEEDS Certified | LEEDS Silver | LEEDS Gold | LEEDS Platinum | LEEDS not applicable or LEEDS score < 10 | 0 | | nstructions: (1.)
o get the total sc | Score each alternat
ore for this alternat | ive for each of the eightive in this value. (3.) S | ht aspects of the value
thaded area represent | . Scores can be post
fatal flaw. Alterna | tive or negative, depend
tives that score in this | ding on the impact of th
area should not be prop | e alternative on the va | ilue. (2.) Total the score | s for each aspect | | Total Raw Score | Calculated | 0 | | | | | | | | | | | | | AND THE COLUMN | | | | Aspect | Rationale | | | | | | Measurement M | Method | | | Total Score (E | Default) | 0 | | Aspect
Non-Renewable
Energy
Consumption | Eco-friendly solutions w | rould be expected to be low of for high energy consuming a | consumers of non-renewable | r energy, Benchmarking ene | orgy consumption against com | ventional secondary treatment | | gy consumed per MG of flow to | nated, compared to the | Note: The total score
maximum score of 25 | calculated may be m | Default) ore than 25. In the instances where th | | | Non-Renewable
Energy | Eco-friendly solutions w
provides penalty points
Natural systems replac | for high energy consuming a | effernatives. | e lagoons, constructed biosy | ergy consumption against com- | | Evaluation of primary energy consumed at the W | gy consumed per MG of flow to | or eliminated. Also includes | | calculated may be m | | | | Non-Renewable
Energy
Consumption | Eco-friendly solutions is provided penalty points. Natural systems replacivarious kinds. Options. Eco-friendly solutions of | for high energy crinsuming a
e concrete and steel constru
that reduce wellands and gre | en space get penalty points es for both water-based and | e lagoons, constructed bioxy | wales, rain gardens etc. that in | ncrease green space of | Evaluation of primary energy
energy consumed at the W
Acres of wetlands and othe
subjective evaluation of the
Subjective evaluation of ch | py consumed per MG of flow to
CWTP per MG treated.
In types of green space created
"basis" of the alternative - "gre
anges predicted in the expedic
, increased base flow or decre | or viliminated. Also includes
sen" or "gray". | | calculated may be m | | | | Ion-Renewable Inergy Ionsumption Use of Natural Systems Autitiple-Use | Eco-friendly solutions w
provides penalty points Natural systems replac-
various kinds. Options Eco-friendly solutions co- de direct water-based in | for high energy consuming a
e concrete and steel operation
that reduce wellands and gir
restle recreational opportunities
restle recreation, (first watching, his
ds at the source through behavior | alternatives. Introduced west bottom storage seen space get penalty points are storage and seen space and seen space and seen seen seen seen seen seen seen se | r lagoons, constructed bioso-
riparien recreation. Busting etc. would be considered | wales, rain gardens etc. that in | ncrease given spece of would would switching, swittening etc. would | Evaluation of primary energy
energy consumed at the W
Acres of wortlands and other
subjective evaluation of the
Subjective evaluation of chrasuit of belief water quality
tree cover or vegitated rips.
Modeleri land-side poliutars | py consumed per MG of flow to
CWTP per MG treated.
In types of green space created
"basis" of the alternative - "gre
anges predicted in the expedic
, increased base flow or decre | or eliminated. Also includes
ent "or "grey".
or riparian environment as a
seased flow pushs, increased
feel by the BGC Water Clustin. | | calculated may be m | | | | ion-Renewable
inergy
consumption
Use of Natural
systems
Autitiple-Use
actities | Eco-friendly solutions up provides penalty points Netural systems replac various kinds. Options Eco-friendly solutions on direct water-based in Controlling pollutant los avoiding and of pipe tre | for high energy consuming a
e concrete and steel constitute
that reduce wetlends and gir
reate recreational opportunities
correction. Bird watching, his
did at the source through beh-
atment requirements. | alternatives. chion with well beltiom storage sen space get penelty points as for both water-based and days, biking, picnicing; campi savier modification, product n | r legoons, constructed bioscopic formation recreation. Busting and considered grant would be considered applicaments or alignmenter or alignmenter. | wales, rain perdens etc. thet is
transing, keyaking, fishing,
related riparian recreation. | ncrease green space of | Evaluation of primary energy
energy consumed at the W
Acres of worlands and othe
subjective evaluation of the
Subjective evaluation of chromatic distribution dis | yy consumed per MG of flow to
CWTP per MG treated. If hypox of green square created
Thesis" of the attemative - "gir
anges predicted in the equatic
interaction of the consumer
into a consumer
interaction as calcular
treatment of the consumer
I loading reductions as calcular
treatment of the consumer
beable construction impacts be
beable construction impacts be | t or eliminated. Also includes
ten? or "grey". or riparian environment as a
seed flow peaks, increased
seed flow peaks, increased
tend by the BGC Water Clusting
reseasurements. | | calculated may be m | | | | ton-Renewable nergy consumption of the | Eco-friendly solutions up revisites penalty points Netural systems replace various kinds. Options Eco-friendly solutions c be direct water-based in avoiding end of pipe te- Probable construction in revisiting end of pipe te- instance confidence. Alternative configuration uply. The same pump up | for high energy consuming a
e concrete and sheel constitute
that reduce wetlends and girl
reade recreational apportunition
correction. Bird wetching, his
did at the source through behativent requirements
uppects on traffic, noise and did
can either enhance or delive. | alternatives. Intion with well bottom storage sen space get pensity points as for both weller-based and sing, biking, picnicing, campions are modification, product not are all measures of the function of the form the automatical program a residence that fits right in | riparian recreation. Busting etc., would be considered placements or stormwater riendiness of an alternative erty. For example, at extremely, For example, at extremely. | wakes, rain gerdens etc. that is canning, keyaking, fishing, related riparian recreation. Transgement BMPs that capit, construction impacts get per capital pump station or interpretability pump station in larger parcel of find is evaluated. | eading, swimming sits, would use poliutants thereby smally points for creating | Evaluation of primary energy energy consumed at the W Acres of worlands and othe subjective evaluation of the Subjective evaluation of the subjective evaluation of the subjective evaluation of the subjective evaluation of primary of the subjective evaluation of properties and the properties of the Subjective evaluation of processivution envisioned for At the plenning level, projective evaluation graphs of the properties. De | yy consumed per MG of flow to
CWTP per MG treated. If hypox of green square created
Thesis" of the attemative - "gir
anges predicted in the equatic
interaction of the consumer
into a consumer
interaction as calcular
treatment of the consumer
I loading reductions as calcular
treatment of the consumer
beable construction impacts be
beable construction impacts be | or eliminated. Also includes or specific or "grey" as asset flow peaks, increased as a sased flow peaks, increased led by the BGC Water Quality measurements. | | calculated may be m | | | | ion-Renewable menusuri procession of Natural
procession of Natural
posterior Natura | Eco-friendly solutions up revides penally points Netural systems replace various kinds. Options Eco-friendly solutions code direct water-based in a celebrate solutions code direct water-based in a celebrate solution and direct water-based in a celebrate solution. Probable construction in rules are gump in hadden to my view by land. Adding impermeable sur | for high energy consuming a
e concrete and sheel constitute that reduce wetlends and girl
meate recreational apportunities
eccreation. Bird watching, his
dis at the source through beh
strend requirements
reports on traffic, noise and di
can either enhance or detre
tation can be "disgusted" as
can either enhance or detre
tation can be "disgusted" as
can either enhance or detre
tation can be disgusted as
conjugate and a
consensity of
consensity of
conse | elformetives. ction with well bottom storage een space get pennelly points een space get pennelly points een for both weter-based and ang. bilking, picmicing, campions of the savier modification, product in the savier modification, product in the savier modification, product or a residence that fits right in panden or other green space volume, peak
runoff forwester. | riparian recreation. Busting etc., would be considered placements or atorrowater ripidicarrents of an alternative of the respictory. For example, an extre with the neighborhood. If a added to enhance the neigh | wakes, rain gerdena etc. thet is canoning, keyaking, fishing, related riparian recreation. Transgement BMPs that capts construction impacts get pe related purple station impacts get pe related purple station impacts get pe related purple station in the second | wading, swimming sit: would
wading, swimming sit: would
ure pollutants thereby
maky points for creating
can be noisy, arreby, and
six, a pump station can be | Evaluation of primary energy energy consumed at the W Acres of worlands and othe subjective evaluation of the subjective evaluation of the result of better water quality tree cover or vegitated rips. Modeled land-side pollutar Tool or by compensation to 8 Subjective evaluation of precinstruction envisioned for At the plenning level, projective. Department of processity. The approach is the approach of the proposition of processitic The approach of the plenning level, projective. Department of the proposition of processitic The approach of the processity of the approach approac | ye consumed per MG of flow to
COVITP per MG treated. If hypers of green square orealed
"basis" of the atternetive - "girl
anges predicted in the aquistic
interest of the atternetive - "girl
anges predicted in the aquistic
to adding reductions as calcular
to a second to avoid neg
per adding on the availability of la
emeges project definition and but
meges project definition and but
proper and
proper and
project project definition and
project project definition and
project project definition and
project project definition and
project project | or eliminated. Also includes or specific or "grey" as asset flow peaks, increased as a sased flow peaks, increased led by the BGC Water Quality measurements. | | calculated may be m | | | | | | | | | | | S_J1_J | T_NB01 | 4_03_C | | | | | |--|--|--|---
--|---|--|--|--|--|---|---|---|----------------| | Value: | Eco-Friendly | y Solutions | | | | | | | | | | | | | Aspect | -5 | 4 | 1 3 | -2 | 1 -1 | 1 0 | Sc | coring 2 | | | 5 | Assumptions | Score Per Aspe | | Non-Renewable
Energy
Consumption | Primary energy
consumption is greater
then secondary
treatment | Primary energy
consumption equal to 75 -
100% of secondary
treatment | Primary energy
consumption equal to 30 -
75% of secondary
treatment. | Primary energy
consumption equal to 15
30% of secondary
treatment | Primary energy consumption
equal to 0 - 15% of
secondary treatment | No energy consumption except for cleaning and maintenance | Cleaning and maintenance
not needed, no primary
consumption | NA | NA | NA. | NA NA
 Energy consumption due to increase in pumping | -1 | | Use of Natural
Systems | Constructed facilities
permanently displace
5+ acres welfands or
50% locally evaluable
green space | Constructed facilities
permanently displace 3 - 5
acres wellands or 25 - 509
locally evallable green
space | Constructed facilities
permanently displace 1 - 3
lacres vertiseds or 10 - 151
locally available green
space | Constructed facilities
permanently displace 0 -
acre wettends or up to
10% locally available
green space | Constructed facilities temporarily disrupt wetlands or green spece | Atternative does not use or
affect natural systems,
weflends, or green space | Alternative doesn not use
natural systems, but
enhances given space or
welland | Nutural systems play a mino
role in attendance function,
up to 1 acre wetland or 10%
additional green space
created | significant part of alternative | Alternative fully uses natural systems, 3 - 5 acres of wotland created or 25-50% additional green space | Atternative results in multi-
use natural system
development, 5+ acres of
wetland or 50% additional
green space | Force Main construction temporarily disrupts green space | 4 | | Multiple-Use
Facilties | Constructed facilities
permanently eliminate
recreational
opportunity | Constructed facilities significantly impare recreational opportunity | Constructed facilities moderately impairs recreational opportunity | Constructed facilities hav
minor impacts on
recreational opportunity | e Construction temporarily
impacts recreational
opportunity | No impacts on recreational opportunities | Alternative improves eccess to existing recreational areas | Alternative has limited positive impact on recreation | Alternative significantly enhances recreational opportunities | Alternative increases recreational opportunities in erea | Alternative results in multi-
use facility | No impact | 0 | | Source Control ,
of subwatershed
pollutant loads | Poliutant loadings are
increased by 50% | Pollutant loadings are
increased by 30 - 50% | Polistant loadings are increased by 10 - 30% | End of pipe pollutant
loadings are increased by
0 - 10% | End of pipe pollutant loadings impacts are inconsistent, but likely higher | End of pipe pollutant loading are unchanged | Pollutant loadings impacts
are inconsistent, but likely
lower | Source control reduces pollutant loadings by 0 - 10% | Source control reduces
pollutant loadings by 10 -
30% | Source control reduces pollutant loadings by 30 - 50% | Source control reduces pollutant loadings by more than 50% | End of pipe pollutant loadings impacts are inconsistent, but likely higher in all options | -1 | | Non-Obtrusive
Construction
Fechniques | Permanent loss of
green space or
sensitive area
disruption | Main thoroughfare
closures, sensitive area
temporery disruptions | Widespread dust and
noise, blasting, secondary
street closures | Localized dust, noise and local street closures | Minor dust and noise, traffic lane closures | No construction impacts | NA | NA | NA | NA | NA | Force main construction would result in minor dust and lane closures | -1 | | Consistent Land
Use | Intrusive or nuisance
facilities inconsistent
with neighborhood or
lend use. | Facilities inconsistent with
neighborhood or land use. | Facility characteristics
miligated to reduce impact
on neighborhood | Factiles have significent
impact on development
density or land use | Facility has minor impact or
development density or lend
use | No impact on land use or no
above ground facilities | Alternative mitigates existing competibility problem | Alternative removes facility inconsistent with
neighborhood | Alternative removes
nuisance facility from
neighborhood | Allemetive enhances
property values in
neighborhood | Atternative provides
enhancements that
significantly improve
neighborhood | No impact on land use or above ground facilities in all options | 0 | | mpermeable
Surfaces | 5 scres+ of
impermeable surfaces
are added | 3 - 5 scres of impermeable
surfaces are added | 1 - 3 acres of impermeable
surfaces are added | up to 1 acre of
impermeable surfaces an
added | Minor increase in
impermeable surfaces
added | No change in impermeable surface | Minor reduction in
impermeable surfaces | Up to 1 acre of impermeable
surfaces removed | 1 - 3 scres of impermeable
surfaces removed | 3 - 5 acres of impermeable surfaces removed | More than 5 acres of
impermeable surfaces
removed | No change in impermeable surface in all options | 0 | | LEEDS | NA | NA | NA | NA | NA . | LEEDS not applicable or
LEEDS score <10 | LEEDS Score 10 - 25 | LEEDS Centified | LEEDS Silver | LEEDS Gold | LEEDS Pletinum | LEEDS not applicable or LEEDS score < 10 in
all options | 0 | | | | | | | | | - | | - | | | | | | | | | | | | ding on the impact of th
area should not be prop | | due. (2.) Total the score | s for each aspect | | Total Raw Score | | 4 | | Aspect | | | | | | | | | s for each aspect | | Total Raw Score Corrected S | | 4 | | oget the total sc | Rationale | tive in this value. (3.) S | Shaded area represent | s "fatal flaw". Alterna | | araa should not be pro | Measurement M | Method
gy consumed per MG of flow b | | Note: The total score maximum score of 25 | Corrected S | | 4 | | Aspect Non-Renewable | Rationale Eco-triendly solutions w provides penalty points Natural systems replace | would be especial to be low
for high energy consuming a | Shaded area represent | s "fatal flaw". Alterna
e energy, Benchmarking an
e legoons, constructed birs | atives that score in this | area should not be proj | Measurement N Evaluation of privacy energy energy consumed at the W Acres of wetlands and other | Method
gy consumed per MG of flow b | realed, compared to the | Note: The total score maximum score of 25 | Corrected S | Score | 4 | | ASPECT Non-Renewable consumption | Rationale Eco-triendly solutions wormides penalty points Natural systems replace vertices kinds. Options Eco-triendly solutions to | eould be expected to be low
for high energy consuming;
at concrete and steel constru-
tion reduce wellands and gri | Shaded area represents
consumers of non-renewable
atternatives. | s "fatal flaw". Alternation and analysis analysis analysis analysis and a second analysis and a second analysis and a second analysis anal | atives that score in this very consumption against converse, rain gardens etc. that is u. canoing, keyaking, fishing, | area should not be prop
rentional secondary treatment
recrease grean space of | Measurement N Evaluation of primary energy energy consumed at the W Acres of wellands and othe subjective evaluation of the Subjective evaluation of ch | Method gy consumed per MG of flow by COVTP per MG treated. "hasis" of the attendine - 'gin "basis" of the attendine - 'gin "basis of the attendine - 'gin "the same of the attendine atten | realed, compared to the direction of or eliminated. Also includes each or "grey". or ripacion exceloroment as a | Note: The total score maximum score of 25 | Corrected S | Score | 4 | | Aspect Non-Renewable Energy Consumption Use of Natural Systems | Rationale Eco-ineredly solutions aperation per control of the con | would be expected to be low
for high energy consuming:
a concrete and steel constru-
tively reduce wellands and gr
vends (exceedional opportunity
exceedions). Bird watching, hill
what is the source through below | Shaded area represents consumers of non-renewable attenuatives. section with wet bottom storage seen space get penalty points seen space get penalty points seen for both witter-based and sing, billing, picnicing, cample | "fatal flew". Alterni e energy, Benchmarking en e legionis, constructed bies (ripalien recreation, Boelinian) (ripalien recreation, Boelinian) | atives that score in this very consumption against converse, rain gardens etc. that is u. canoing, keyaking, fishing, | area should not be proposed to the proposed secondary treatment of the proposed secondary treatment of wading, swittening etc. would | Measurement It Evaluation of primary energy energy consumed at the W Acres of wettands and othe subjective evaluation of the Subjective evaluation of the result of better water quality tree cover or vegitated ripe Modeled land-side poblitiers | Method gy consumed per MG of flow by COVTP per MG treated. "hasis" of the attendine - 'gin "basis" of the attendine - 'gin "basis of the attendine - 'gin "the same of the attendine atten | or eliminated. Also includes cen' or 'grey'. or riparies excitoment as a search flow peaks, increased suited by the BGC Water Quality | Note: The total score maximum score of 25 | Corrected S | Score | 4 | | Aspect Aspect Non-Renewable Energy Consumption Jise of Natural Systems Autiliple-Use acities dource Control of Source Control of | Rationale Eco-triently solutions a previous break youthous break youthous break youthous break of the controlling political break of the controlling political break youthous break or controlling political be avoiding and of pipe be | rould be expected to be low
for high energy consuming;
at concrete and steel constru-
tively reduce wellends and gr
vends (eccreational opportunity
acreation. Bird watching, hill
did at the source through bel-
atment requirements | Shaded area represents consumers of non-renewable attenuables. colon with wet bottom storage area space get penalty points less for both water-based and sing, biking, panning, campa havior modification, product of | s "fatal flew". Alterna
e energy, Benchmarking an
e legoons, constructed been
injuries recreation. Booling
og etc. would be considered
episcements or stormwater | atives that score in
this
dergy consumption against con-
twistes, rain gardens etc. that is
g. canoing, keyaking, fishing,
g. canoing, keyaking, fishing,
d. related riparien recreation. | area should not be properly beathers are great space of weding, swittening etc. would have published thereby | Measurement N Evaluation of primary energy energy consumed at the W Acres of verifiants and othe subjective evaluation of the Subjective evaluation of the react of better water quality tree cover or vegitated ripe Modeled land-side politiker Tool or by compension to it | Method by consumed per MG of flow by COWTP per MG treated. r typins of given rapido streated. "basis" of the atternative - "gri anges predicted in the aquatic rich areas etc. It loading reductions as calculat teresture valves or pilot program obtable construction impacts be | or riparient successed from the second successed from peaks, increased from peaks, increased successed s | Note: The total score maximum score of 25 | Corrected S | Score | 4 | | ASPECT ASPECT ASPECT ASPECT ASSESSESSESSESSESSESSESSESSESSESSESSESSE | Rationale Eco-triently solutions armoides persetty solutions armoides persetty points Metural systems replace various brids. Options Eco-triently solutions of the desired solutions are solutions and of page techniques are solutions. Probable constitution and of page techniques are solutions are solutions and of page techniques are solutions. | would be expected to be low
for high energy consuming :
at concrete and steel constru-
their reduce wellends and gr
veste recreational opportunit
accreation. Bird watching, his
consistent of the source through be-
side at the source through be-
sides on traffic, noise and in
consistent on traffic and traffic and traffic and the
inconsistent on traffic and | Shaded area represents consumers of non-renewable effernetives. colon with wet brottom elsirep een space get penelly points ies for both water-bread and king, biking, picnicing, cample dust are all measures of the sect from the surrounding pro- | s "fatal flew". Alterni e energy, Benchmarking an e energy, Benchmarking an e legoons, constructed bins riparian recreation. Boalin riparian recreation or stormwater epiacements or stormwater binedifiness of an alternation binedifiness of an alternation with the neighborhood. If | atives that score in this series consumption against convains, rain gardens etc. that is go cancing, keysking, fishing, related riparien recreation. I management BMPs that capt a construction impacts get perfectly printed by pump stations is larger secred in and is available. | area a should not be proposed to the | Measurement N Evaluation of primary energy energy consumed at the W Acres of wetlands and other subjective evaluation of ch result of before value quality tree cover or vegitated rips Modeled land-side poliulair Tool or by comparison to it Subjective evaluation of ch created of before Tool or by comparison to it Added the poliulair Tool or by comparison to it At the planning level, price autronounting properties. De | Method by consumed per MG of flow by COWTP per MG treated. r typins of given rapido streated. "basis" of the atternative - "gri anges predicted in the aquatic rich areas etc. It loading reductions as calculat teresture valves or pilot program obtable construction impacts be | rested, compared to the of or eliminated. Also includes een or "grey". or riporities environment as a exect flow peaks, increased sted by the BGC Water Qualit in measurements. on measurements. | Note: The total score maximum score of 25 | Corrected S | Score | 4 | | Aspect As | Rationale Eco-ineedly solutions and an according process and according process and according process and according process and according political to according political to according political to according political to according and of pips to a process and according and of pips to according a pipe to according a pipe. Alternative conditions. | would be expected to be low-
for high energy consuming. I concrete and steel constru-
their reduce wellends and gr
vanta recreational opportunits
recreation. Bird watching, his
variety and the source through be-
letment requirements. In can either enhance or detar-
tistation can be "disguised" as
adsaughe, and a community | Shaded area represents consumers of non-renewable sternatives. colon with wet bottom storage een space get penetly points ies for both water-bread and king, biking, picnicing, cample havior modification, product of dust are all measures of the scot from the surrounding prop a residence that fits right in garden or other green space | s "fetal flew". Alterns s energy, Benchmarking an s energy, Benchmarking an s legicions, constructed bins ripiation recreation. Busine pg etc. would be considered seplecements or storrewate friendliness of an alternative party. For example, an extra with the resimplement. If the resimplement of the stiffed to enhance the regi- stiffed to enhance the regi- st, and the total transport of the se, and the total transport of | atives that score in this sergy consumption against convices, rain gardens etc. that is governed, keysking, fishing, t related riperian recreation. If management BMPs that capt are construction impacts get permitted by the property surfaced of land is available proposed. | area should not be proposed to the | Measurement N Evaluation of primary energy energy consumed at the W Acres of wetlants and othe subjective evaluation of the pro- construction envisioned for At the planning level, projec- surrounding properties. De- surrounding properties. | Method by consumed per MG of flow by COVITP per MG treated. or typins of green space created. This is "of the atternative." yn anges predicted in the aquelic typins are seed to the consumer of decre rien areas etc. I loading reductions as calcula tereture values or plat program the atternative. List can be defined to evoid nea pending on the averalishibly of la utages project definition and but sees project definition and but sees project definition and but sees project definition and but sees. | rested, compared to the of or eliminated. Also includes een or "grey". or riporities environment as a exect flow peaks, increased sted by the BGC Water Qualit in measurements. on measurements. | Note: The total score maximum score of 25 | Corrected S | Score | 4 | # **Cluster Comparison** # Project #1: S_JT_JT_NB01_01_C_A (Alternative 3) ### Raw Benefit Score² | CSO/SSO ID | | Regulatory
Performance | Public Health | Asset
Protection | Environmental
Enhance | Eco-Friendly
Solutions | |---|----------------------|---------------------------|---------------|---------------------|--------------------------|---------------------------| | ISO28 | | 21 | 22 | 10 | 10 | 3 | | 28390 | | 5 | 7 | 10 | 10 | 3 | | 31733 | | 21 | 20 | 10 | 10 | 3 | | 28395A | | 5 | 3 | 10 | 10 | 3 | | 64505 | | 5 | 3 | 10 | 10 | 3 | | MSD0255 | | 0 | 0 | 10 | 10 | 3 | | 28392 | | 0 | 0 | 10 | 10 | 3 | | 28391 | | 0 | 0 | 10 | 10 | 3 | | 28173 | | 0 | 0 | 10 | 10 | 3 | | 64096 | | 21 | 8 | 5 | 4 | -4 | | 86052 | | 21 | 22 | 5 | 4 | -4 | | 92061 | | 0 | 0 | 5 | 4 | -4 | | MSD0263 | | 21 | 18 | 5 | 4 | -4 | | Weighting Factor Weighted Benefit Score | | 8
960 | 10
1030 | 6
660 | 8
848 | 6
66 | | Total Benefit Score | 3564 | | | | | | | Total Capital Cost ³ | 20209000 | | | | | | | Total Present Worth Costs ³ | | | | | | | | Weighted Benefit/Cost Ratio (Capital Costs) Weighted Benefit/Cost Ratio (Total Present Worth Costs) | 17.635707
#DIV/0! | | | | | | #### Notes: - 1. Data Input Cells are highlighted in yellow - 2. Raw Benefit Scores for Regulatory Performance and Public Health values are from the CSO or SSO Level of Control Benefit Sheets - 3. Capital and Total Present Worth Costs from the "Proj Summary" Page of the Cost Model for the clustered alternative (Reference fu JT_NB01_BCA_Q_Q_xls 2-Year Jeffersontown Blending Elimination Plan - Original IOAP, Alternatives 1, 2, 3 (all the same) | | Measure | | In | npact | / Freq | uency | | Rationale | Meas | urement Met | hod | |-------------------------|--------------------|----------------|------------|--------|--------|---------|---|--|---|-------------|-------------| | Performanc
e Measure | SSOs | 6 month | 1 Year | 2 Year | 5 Year | 10 Year | Modeled
Overflow
Point or No
discharge | Regulations do not distinguish between potential impact of SSOs, therefore frequency and impact are the same for Regulatory Performance value Modeled Overflow Points are not considered until verified. | Measurement method quantify the SSO discl | | c models to | | | Value | 25 | 12 | 0 | 4 | 1 | 0 | | | | | | | ISO28 | BL | | | PR | 1686 | | | 25 | 4 | 21 | | Frequency | 28390 | | | BL | PR | | | | 9 | 4 | 5 | | | 31733 | BL | | | PR | | | | 25 | 4 | 21 | | | 28395A | | | BL | PR | | | | 9 | 4 | 5 | | nbe | 64505 | | | BL | PR | | | | 9 | 4 | 5 | | F | MSD0255 | | | | | | BL | | 0 | 0 | 0 | | | 28392 | | | | | | BL | | 0 | 0 | | | J | 28391 | | | | | | BL | | 0 | 0 | | | | 28173 | | | | | UFU | BL | | 0 | 0 | | | ote - This v | alue sheet calcula | ates the total | I benefit. | | | | | | | | | | | Measure | | In | npact | / Freq | uency | | Rationale | Meas | urement Met | hod | |-------------------------|---------------------|---------------|------------|--------|--------|----------------|---
--|--|-------------------------|-----| | Performanc
e Measure | SSOs | 6 month | 2121 | 2 Year | 5 Year | 10 Year | Modeled
Overflow
Point or No
discharge | Regulations do not distinguish between potential impact of SSOs, therefore frequency and impact are the same for Regulatory Performance value Modeled Overflow Points are not considered until verified. | Measurement method quantify the SSO disc | ls will be via hydrauli | | | | Value | 25 | 16 | 9 | 4 | 1 | 0 | | | | | | quency | 64096 | BL | | | PR | | | | 25 | 4 | 21 | | | 86052 | BL | | | PR | | | | 25 | 4 | 21 | | 5 | 92061 | | | | | | BL | | 0 | 0 | 0 | | ш | MSD0263 | BL | | | PR | | | | 25 | 4 | 21 | | te - This v | alue sheet calcula | ites the tota | I benefit. | 14 . 4 | | | | | | | | | | verage annual overl | | | | | lity standards | | | Sub | total | 63 | | /alue: | Public Hea | alth Enhai | ncement - | SSOs | | | | | | | | |-------------------------|--|--|--|------------------------------------|----------------------------------|------------------------------------|---|---|--|-----------------------------------|--| | | Measure | | | Release | e Impact | | | Rationale | Meas | surement | Method | | Performance
Measures | SSOs | Basement
Flooding
or
Park or Blue-
Line Stream >
50,000 Gals
or
>200,000 Gals | Residential
Area > 50,000
Gals
or
Park or Blue
Line <50,000
Gals
or
> 100,000 Gals | Release
50,000 -
99,999 Gals | Release
20,000-49,999
Gals | Release
10,000 -
19,999 Gals | No discharge | Not all discharges violate the Clean Water Act. Discharges vary in the impact to public health and the environment. Therefore, EPA developed guidance on how to set priorities based on the risk to the public's health and the environment under their Enforce | Measurement in
to quantify the S
establish relative
locations or obje | SO discharge a
e distance from | ia hydraulic mode
nd the GIS to
designated | | 2 | 6 Month | 25 | 20 | 15 | 10 | 5 | 0 | Releases 900,000 gallons | 25 | 0 | 25 | | Frequency | 1 Year | 20 | 16 | 12 | 8 | 4 | 0 | Releases 2,000,000 gallons | 20 | 0 | 20 | | nb | 2 Year | 15 | 12 | 9 | 6 | 3 | 0 | Releases 3,080,000 gallons | 15 | 0 | 15 | | ě | 5 Year | 10 | 8 | 6 | 4 | 2 | 0 | Releases 4,600,000 gallons | 10 | 6 | 4 | | ш | 10 Year | 5 | 4 | 3 | 2 | 1 | 0 | Releases 5,720,000 gallons | 5 | 4 | 1 | | ximum score of | sheet calculates the ave
f 25. | rage benefit over t | he recurrence inte | rvals. A correcti | ion calculation is i | to obtain a | . The same of | | | 13 | | | FC - Fecal colife | ed sewer overflow
orm
nic information system | | | | | | Corrected Score | | | 22 | | | /alue: | Public Hea | alth Enhar | ncement - | SSOs | | | | | | | | |--|-------------------------|--|--|------------------------------------|----------------------------------|------------------------------------|--|---|-------------------|-------------------------------------|---| | | Measure | | | Release | e Impact | | | Rationale | Mea | surement | Method | | Performance
Measures | SSOs | Basement
Flooding
or
Park or Blue-
Line Stream >
50,000 Gals
or
>200,000 Gals | Residential
Area > 50,000
Gals
or
Park or Blue
Line <50,000
Gals
or
> 100,000 Gals | Release
50,000 -
99,999 Gals | Release
20,000-49,999
Gals | Release
10,000 -
19,999 Gals | No discharge | Not all discharges violate the Clean Water Act. Discharges vary in the impact to public health and the environment. Therefore, EPA developed guidance on how to set priorities based on the risk to the public's health and the environment under their Enforce | to quantify the S | SSO discharge a
re distance from | ia hydraulic model
nd the GIS to
designated | | 75 | 6 Month | 25 | 20 | 15 | 10 | 5 | 0 | No Discharge | 0 | 0 | 0 | | Frequency | 1 Year | 20 | 16 | 12 | 8 | 4 | 0 | No Discharge | 0 | 0 | 0 | | nk | 2 Year | 15 | 12 | 9 | 6 | 3 | 0 | Releases 63,000 gallons | 12 | 0 | 12 | | ē | 5 Year | 10 | 8 | 6 | 4 | 2 | 0 | Releases 167,000 gallons | 8 | 2 | 6 | | щ | 10 Year | 5 | 4 | 3 | 2 | 1 | 0 | Releases 248,000 gallons | 5 | 2 | 3 | | e - This value s | heat calculates the ave | rage benefit over t | he recurrence inte | rvals. A correcti | on calculation is i | ncluded in order | to obtain a | Average Total So | core | | 4 | | Acronyms
CSO - Combine
FC - Fecal colifo | d sewer overflow | | | | | | The
state of s | Corrected Sco | re | | 7 | | Value: | Public Hea | alth Enhai | ncement - | SSOs | | | | AP, Alternatives 1, 2, 3 (all | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | |---|--|--|--|------------------------------------|----------------------------------|------------------------------------|--------------|--|---|-------------------------------------|--------| | | Measure | | | Releas | e Impact | | | Rationale | Mea | surement | Method | | Performance
Measures | SSOs | Basement
Flooding
or
Park or Blue-
Line Stream >
50,000 Gals
or
>200,000 Gals | Residential
Area > 50,000
Gals
or
Park or Blue
Line <50,000
Gals
or
> 100,000 Gals | Release
50,000 -
99,999 Gals | Release
20,000-49,999
Gals | Release
10,000 -
19,999 Gals | No discharge | Not all discharges violate the Clean Water Act.
Discharges vary in the impact to public health
and the environment. Therefore, EPA developed
guidance on how to set priorities based on the
risk to the public's health and the environment
under their Enforce | | SO discharge a
e distance from (| | | > | 6 Month | 25 | 20 | 15 | 10 | 5 | 0 | Releases 80,000 gallons | 20 | 0 | 20 | | Frequency | 1 Year | 20 | 16 | 12 | 8 | 4 | 0 | Releases 172,000 gallons | 16 | 0 | 16 | | ä | 2 Year | 15 | 12 | 9 | 6 | 3 | 0 | Releases 269,000 gallons | 15 | 0 | 15 | | ē | 5 Year | 10 | 8 | 6 | 4 | 2 | 0 | Releases 393,000 gallons | 10 | 2 | 8 | | ш | 10 Year | 5 | 4 | 3 | 2 | 1 | 0 | Releases 495,000 gallons | 5 | 2 | 3 | | ote - This value s
aximum score of
Acronyms | heet calculates the aver
25. | rage benefit over t | he recurrence inte | rvals. A correct | ion calculation is i | to obtain a | | | | | | | CSO - Combine
FC - Fecal colifo | d sewer overflow
orm
ic information system | | | | | | | Corrected Sco | re | | 20 | | /alue: | Public Hea | alth Enhai | ncement - | SSOs | | | | | | | | |-------------------------|-------------------------|--|--|------------------------------------|----------------------------------|------------------------------------|-----------------|---|-----------------|-------------------------------------|--------| | | Measure | | | Release | e Impact | | | Rationale | Mea | surement | Method | | Performance
Measures | SSOs | Basement
Flooding
or
Park or Blue-
Line Stream >
50,000 Gals
or
>200,000 Gals | Residential
Area > 50,000
Gals
or
Park or Blue
Line <50,000
Gals
or
> 100,000 Gals | Release
50,000 -
99,999 Gals | Release
20,000-49,999
Gals | Release
10,000 -
19,999 Gals | No discharge | Not all discharges violate the Clean Water Act. Discharges vary in the impact to public health and the environment. Therefore, EPA developed guidance on how to set priorities based on the risk to the public's health and the environment under their Enforce | to quantify the | SSO discharge a
re distance from | | | > | 6 Month | 25 | 20 | 15 | 10 | 5 | 0 | No Discharge | 0 | 0 | 0 | | Frequency | 1 Year | 20 | 16 | 12 | 8 | 4 | 0 | No Discharge | 0 | 0 | 0 | | ž | 2 Year | 15 | 12 | 9 | 6 | 3 | 0 | Releases 2,000 gallons | 3 | 0 | 3 | | ē | 5 Year | 10 | 8 | 6 | 4 | 2 | 0 | Releases 31,000 gallons | 4 | 0 | 4 | | ш | 10 Year | 5 | 4 | 3 | 2 | 1 | 0 | Releases 46,000 gallons | 2 | 1 | 1 | | ximum score of | heet calculates the ave | rage benefit over t | he recurrence inte | rvals. A correcti | ion calculation is i | to obtain a | | | | 2 | | | FC - Fecal colifo | d sewer overflow | | | | | | Corrected Score | | | 3 | | | Value: | Public Hea | alth Enhar | cement - | SSOs | | | | | | | | |-------------------------|--------------------------|--|--|------------------------------------|----------------------------------|------------------------------------|-----------------|--|-------------------|-----------------------------------|--------| | | Measure | | | Release | e Impact | | | Rationale | Mea | surement | Method | | Performance
Measures | SSOs | Basement
Flooding
or
Park or Blue-
Line Stream >
50,000 Gals
or
>200,000 Gals | Residential
Area > 50,000
Gals
or
Park or Blue
Line <50,000
Gals
or
> 100,000 Gals | Release
50,000 -
99,999 Gals | Release
20,000-49,999
Gals | Release
10,000 -
19,999 Gals | No discharge | Not all discharges violate the Clean Water Act.
Discharges vary in the impact to public health
and the environment. Therefore, EPA developed
guidance on how to set priorities based on the
risk to the public's health and the environment
under their Enforce | to quantify the S | SSO discharge are distance from (| | | > | 6 Month | 25 | 20 | 15 | 10 | 5 | 0 | No Discharge | 0 | 0 | 0 | | Frequency | 1 Year | 20 | 16 | 12 | 8 | 4 | 0 | No Discharge | 0 | 0 | 0 | | ne | 2 Year | 15 | 12 | 9 | 6 | 3 | 0 | Releases 13,600 gallons | 3 | 0 | 3 | | ē | 5 Year | 10 | 8 | - 6 | 4 | 2 | 0 | Releases 170,000 gallons | 8 | 2 | 6 | | ш | 10 Year | 5 | 4 | 3 | 2 | 1 | 0 | Releases 282,000 gallons | 5 | 2 | 3 | | ote - This value : | sheet calculates the ave | rage benefit over t | he recurrence inte | ervals. A correct | ion calculation is i | ncluded in order | to obtain a | Average Total So | core | | 2 | | Acronyms | ed sewer overflow | | | | | | Corrected Score | | | 3 | | | Value: | Public Hea | alth Enhar | ncement - | SSOs | | | Ta | | | | | |-------------------------|---|--|--|------------------------------------|----------------------------------|------------------------------------|--------------|---|------|------------------------------------|--| | | Measure | | | Release | e Impact | | | Rationale | Meas | surement | Method | | Performance
Measures | SSOs | Basement
Flooding
or
Park or Blue-
Line Stream >
50,000 Gals
or
>200,000 Gals | Residential
Area > 50,000
Gals
or
Park or Blue
Line <50,000
Gals
or
> 100,000 Gals | Release
50,000 -
99,999 Gals | Release
20,000-49,999
Gals | Release
10,000 -
19,999 Gals | No discharge | Not all discharges violate the Clean Water Act. Discharges vary in the impact to public health and the environment. Therefore, EPA developed guidance on how to set priorities based on the risk to the public's health and the environment under their Enforce | | SO discharge as
distance from (| ia hydraulic mode
nd the GIS to
designated | | > | 6 Month | 25 | 20 | 15 | 10 | 5 | 0 | Releases 600 gallons | 5 | 0 | 5 | | Frequency | 1 Year | 20 | 16 | 12 | 8 | 4 | 0 | Releases 16,000 gallons | 4 | 0 | 4 | | ž | 2 Year | 15 | 12 | 9 | 6 | 3 | 0 | Releases 55,000 gallons | 12 | 0 | 12 | | ē | 5 Year | 10 | 8 | 6 | 4 | 2 | 0 | Releases 123,000 gallons | 8 | 4 | 4 | | u_ | 10 Year | 5 | 4 | 3 | 2 | 1 | 0 | Releases 160,000 gallons | 4 | 3 | 1 | | aximum score of | theet calculates the ave | rage benefit over t | he recurrence inte | rvals. A correct | on calculation is i | ncluded in order | to obtain a | Average Total So | core | | 5 | | FC - Fecal colife | od sewer overflow
orrn
oic information system | | | | | | | Corrected Sco | re | | 8 | | /alue: | Public Hea | alth Enhar | ncement - | SSOs | | | | | | | | |---|-------------------------|--|--|------------------------------------|----------------------------------|------------------------------------|---------------------
---|-------------------|------------------------------------|--------| | | Measure | | | Release | e Impact | | | Rationale | Mea | surement | Method | | Performance
Measures | SSOs | Basement
Flooding
or
Park or Blue-
Line Stream >
50,000 Gals
or
>200,000 Gals | Residential
Area > 50,000
Gals
or
Park or Blue
Line <50,000
Gals
or
> 100,000 Gals | Release
50,000 -
99,999 Gals | Release
20,000-49,999
Gals | Release
10,000 -
19,999 Gals | No discharge | Not all discharges violate the Clean Water Act. Discharges vary in the impact to public health and the environment. Therefore, EPA developed guidance on how to set priorities based on the risk to the public's health and the environment under their Enforce | to quantify the S | SSO discharge a
e distance from | | | > | 6 Month | 25 | 20 | 15 | 10 | 5 | 0 | Releases 155,000 gallons | 20 | 0 | 20 | | Frequency | 1 Year | 20 | 16 | 12 | 8 | 4 | 0 | Releases 223,000 gallons | 20 | 0 | 20 | | ă. | 2 Year | 15 | 12 | 9 | 6 | 3 | 0 | Releases 292,000 gallons | 15 | 0 | 15 | | ē | 5 Year | 10 | 8 | 6 | 4 | 2 | 0 | Releases 360,000 gallons | 10 | 2 | 8 | | u. | 10 Year | 5 | 4 | 3 | 2 | 1 | 0 | Releases 405,000 gallons | 5 | 2 | 3 | | te - This value st | heet calculates the ave | rage benefit over t | he recurrence inte | rvals. A correcti | on calculation is i | to obtain a | Average Total Cours | | | | | | Acronyms
CSO - Combined
FC - Fecal colifo | i sewer overflow | | | | | | Corrected Score | | | | | | /alue: | Public Hea | alth Enhar | ncement - | SSOs | | | | | | | | |--|--------------------------|--|--|------------------------------------|----------------------------------|------------------------------------|--------------|--|------|----------------------------------|---| | | Measure | | | Release | e Impact | | | Rationale | Meas | surement | Method | | Performance
Measures | SSOs | Basement
Flooding
or
Park or Blue-
Line Stream >
50,000 Gals
or
>200,000 Gals | Residential
Area > 50,000
Gals
or
Park or Blue
Line <50,000
Gals
or
> 100,000 Gals | Release
50,000 -
99,999 Gals | Release
20,000-49,999
Gals | Release
10,000 -
19,999 Gals | No discharge | Not all discharges violate the Clean Water Act.
Discharges vary in the impact to public health
and the environment. Therefore, EPA developed
guidance on how to set priorities based on the
risk to the public's health and the environment
under their Enforce | | SO discharge are distance from o | ia hydraulic model
nd the GIS to
designated | | > | 6 Month | 25 | 20 | 15 | 10 | 5 | 0 | Releases 36,000 gallons | 20 | 0 | 20 | | requency | 1 Year | 20 | 16 | 12 | 8 | 4 | 0 | Releases 71,000 gallons | 16 | 0 | 16 | | ne | 2 Year | 15 | 12 | 9 | 6 | 3 | 0 | Releases 123,000 gallons | 12 | 0 | 12 | | 9 | 5 Year | 10 | 8 | 6 | 4 | 2 | 0 | Releases 204,000 gallons | 10 | 4 | 6 | | II. | 10 Year | 5 | 4 | 3 | 2 | 1 | 0 | Releases 274,000 gallons | 5 | 2 | 3 | | ote - This value s | sheet calculates the ave | rage benefit over t | he recurrence inte | orvals. A correct | ion calculation is i | included in order | to obtain a | Average Total S | core | | 11 | | Acronyms
CSO - Combine
FC - Fecal colife | ed sewer overflow | | | | | | | Corrected Sco | re | | 18 | | Value: | Public Hea | Ith Enhar | comont | 9906 | | | | | | | | |---|--------------------------|--|--|------------------------------------|----------------------------------|------------------------------------|-------------------|--|-------------------|--|--| | value: | | illi Elliai | icement - | | lana a a t | | | D-tit- | Man | aamant | Mathad | | | Measure | | | Release | Impact | | | Rationale | Mea | surement | wietnoa | | Performance
Measures | SSOs | Basement
Flooding
or
Park or Blue-
Line Stream >
50,000 Gals
or
>200,000 Gals | Residential
Area > 50,000
Gals
or
Park or Blue
Line <50,000
Gals
or
> 100,000 Gals | Release
50,000 -
99,999 Gals | Release
20,000-49,999
Gals | Release
10,000 -
19,999 Gals | *
No discharge | Not all discharges violate the Clean Water Act.
Discharges vary in the impact to public health
and the environment. Therefore, EPA developed
guidance on how to set priorities based on the
risk to the public's health and the environment
under their Enforce | to quantify the S | SSO discharge ar
re distance from o | ia hydraulic mode
nd the GIS to
designated | | > | 6 Month | 25 | 20 | 15 | 10 | 5 | 0 | No Release | 0 | 0 | 0 | | 2 | 1 Year | 20 | 16 | 12 | 8 | 4 | 0 | No Release | 0 | 0 | 0 | | Ine | 2 Year | 15 | 12 | 9 | 6 | 3 | 0 | No Release | 0 | 0 | 0 | | Frequency | 5 Year | 10 | 8 | 6 | 4 | 2 | 0 | No Release | 0 | 0 | 0 | | Œ | 10 Year | 5 | 4 | 3 | 2 | 1 | 0 | No Release | 0 | 0 | 0 | | | sheet calculates the ave | rage benefit over t | he recurrence inte | ervals. A correcti | on calculation is i | included in order | to obtain a | Average Total Se | core | | 0 | | Acronyms CSO - Combine FC - Fecal colife GIS - Geograph | ed sewer overflow | | | | | | Corrected Score | | | 0 | | | lue: | Asset Pro | otection | | | | | | | | | | | | |----------------------|--------------|---------------------|-------------|--|---|--|---|---|--|---|---|--|-------------------| | | | Measure | | | , | In | pact | | | Rationale | Mea | surement Metho | d | | | | Flood | Darnage | Homes or
businesses are
subject to severe
structural damage | Homes or
businesses are
subject to minor
to moderate
structural damage | Flooding limits
access to
homes or
businesses | Flooding limits
access to
recreational
areas | Standing water
on property, but
access not
affected and no
damage
expected | No standing water | Stormwater BMPs can reduce stormwater peaks and reduce extent of flooded areas, while sewer separation may increase localized stormwater peak flows and increase the flooding impacts of storms. Alternatively, purchase of highly impacted properties may be a cheaper way to reduce flood damage and create green space and buffer zones. | Customer Information Sys | vvailable, historic customer c
stem, or historic observatio
expected relative impacts o
ater flows. | ns of flood-prone | | Performance Measures | | Basemen | it Back-ups | Sewer
surcharging
within 6 feet of
ground surface
for more than
20% of manholes | Sewer
surcharging
within 6 feet of
ground surface
for 10 - 20% of
manholes | Sewer
surcharging
within 6 feet of
ground surface
for 5 - 10% of
manholes | Sewer
surcharging
within 6 feet of
ground surface
for 1 - 5% of
manholes | Sewer
surcharging
within 6 feet of
ground surface
for 0 - 1% of
manholes | No surcharging
within 6 feet of
ground surface | First floor levels are typically 1 - 2 feet above ground surface, and basement floors are typically 8 - 10 feet below the first floor. A sewer surcharge of 6 feet below ground surface is highly likely to cause back-ups in homes with basement service. | Measurement methods w
hydraulic grade lines comp | | | | forman | Storm Events | 1 | - | Most Severe
Impact | | | | Least Impact | No Impact | | | | | | Per | | • | | 5 | 4 | 3 | 2 | 1 | 0 | Assumptions | Base Case Score | Alternative Score | Total Score | | | 6 Month | Most
Likely | 5 | 25 | 20 | 15 | 10 | 5 | 0 | | 10 | 0 | 10 | | | 1 Year | | 4 | 20 | 16 | 12 | 8 | 4 | 0 | | 12 | 4 | 8
| | Frequency | 2 Year | | 3 | 15 | 12 | 9 | 6 | 3 | 0 | | 9 | 3 | 6 | | Freq | 5 Year | | 2 | 10 | 8 | 6 | 4 | 2 | 0 | | 8 | 4 | 4 | | | 10 Year | Least | 1 | 5 | 4 | 3 | 2 | 1 | 0 | | 5 | 3 | 2 | | | Not Possible | Not
Poss
ible | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Average | Total Score | | 6 | | Pro | ect #1 | | | | | | | S_JT_ | JT_NB01A_0 | 3_C | | | | |----------------------|------------------------|--|------------------|--|---|--|---|---|--|---|---|---|-------------------| | alue: | Asset Pro | tection | | | | | | | | | | | | | | | Measure | | | | Im | pact | T' | Rationale | Measurement Method | | | | | | | Flood | Damage | Homes or
businesses are
subject to severe
structural damage | Homes or
businesses are
subject to minor
to moderate
structural damage | Flooding limits access to homes or businesses | Flooding limits access to recreational areas | Standing water
on property, but
access not
affected and no
damage
expected | No standing water | Stormwater BMPs can reduce stormwater
peaks and reduce extent of flooded areas,
while sewer separation may increase
localized stormwater peak flows and
increase the flooding impacts of storms.
Alternatively, purchase of highly impacted
properties may be a cheaper way to reduce
flood damage and create green space and
buffer zones. | Customer Information Sys | vailable, historic customer o
tem, or historic observatio
expected relative impacts o
ter flows. | ns of flood-prone | | Performance Measures | | Basement Back-ups within 6 fe
ground su
for more t | | Sewer
surcharging
within 6 feet of
ground surface
for more than
20% of manholes | Sewer
surcharging
within 6 feet of
ground surface
for 10 - 20% of
manholes | Sewer
surcharging
within 6 feet of
ground surface
for 5 - 10% of
manholes | Sewer
surcharging
within 6 feet of
ground surface
for 1 - 5% of
manholes | Sewer
surcharging
within 6 feet of
ground surface
for 0 - 1% of
manholes | No surcharging
within 6 feet of
ground surface | | Measurement methods will be via hydraulic models to quantif-
hydraulic grade lines compared to ground surface elevations a | | | | forman | Storm Events | | • | Most Severe
Impact | | | | Least Impact | No Impact | | | | | | Per | | 1 | 1 | 5 | 4 | 3 | 2 | 1 | 0 | Assumptions | Base Case Score | Alternative Score | Total Scor | | | 6 Month | Most | 5 | 25 | 20 | 15 | 10 | 5 | 0 | | 5 | 0 | 5 | | - | 1 Year | | 4 | 20 | 16 | 12 | 8 | 4 | 0 | | 4 | 4 | o | | Frequency | 2 Year | | 3 | 15 | 12 | 9 | 6 | 3 | 0 | | 9 | 3 | 6 | | Freq | 5 Year | | 2 | 10 | 8 | 6 | 4 | 2 | o | 1000年 | 8 | 6 | 2 | | | 10 Year | Least | 1 | 5 | 4 | 3 | 2 | 1 | 0 | | 4 | 3 | 1 | | | Not Possible | Not
Poss
ible | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Aver | age Score | | 3 | | - This value : | sheet calculates the a | verage benefit o | over the recurre | ence intervals. A corre | ction calculation is in | cluded in order to | obtain a maximum sc | ore of 25. | | Corre | cted Score | | 5 | | | I.e. | The second second | | | | | | lending | | THE STATE OF | | | | |---|--|---|--|---|---|--|--|--|---|--|---|--|---------------------| | Value: | Environmental E | nhancement | | | | | Sm | oring |
| | | | | | Aspect | -5 | 4 | 3 | -2 | -1 | 0 | 1 | 2 | 2 | 4 | 5 | Assumptions | Score Per Aspe | | Aquatic and
Terestrial Habitet
Protection | Elementary of highlight for race of
and angus ed apacies | Etrimation of significant
amount of common habital | Elimination of review encours of common flability. | Significant habitat imporament | Minute programment to exacting | No impact on habitet | Moor enhancement of
existing habitat | Significant enhancement of
eniging nations | Creation of minor amount of
common habital | Creation of significant amount of common habitat | Creebon of critical habital for
rare or endangered species | Plant elimination restinat Chemiseath Plant is intermitant at earn habitel. Its naturalists that has been modified by contracous plant discharges. | 3 | | testhetics - Solids
and Floatables | 75%- reduction in votation of
Sole with no E&F capture | 50 - 75% of fine with no SSF
removal | 25 - 50% of Sow with no Sali
(singuist) | 10 - 25% of flow with no BSF
(Withorst) | Reduces efficiency of existin
SAF control device, 0 - 10%
of fine with no SAF removal | No change in S&F removal | 0 - 10% of decharged flow
hosted with positive SAF
removal (screens) | 10 - 25 % of discharged flo
beated with positive SAF
returned (screens) | 25 - 50% of discharged flow
Essaled with process 55F
(winned (sureers) | 50 - 75% of decharged New
Tracked with positive SAF
removal screens | 75% - of discharged flow
treated with positive (LSF
removal (screens) | Filt options will provide changes in SSF Riveteral | 0 | | estherics - Odor
and Air Emissions | Create encoying odor source
affecting > 20 customers often | Create entroying odor ansura
affecting *20 customers ofter
or *30 customers occasionell | Creste servicing palar source
affacang 120 customers
occasionally | Create detectable oder source
affecting + SC customers oben | Ornale detectable none source adecting + 50 customers occasionally | No impact on oders | Eliminate delectable odor
assurce effecting < 50
customers occasionally | Eliminate detectable oder adurce effecting > 50 customers uffect | Environ arresting oder source
effecting +26 austiniers
accessmally | e Eliminate annoying oder source
affecting <25 customers often
or >25 customers occasionally | Eliminate serviying ador
source sfecting +20
customers often | Odor will be allowable from all meditions along John Interceptor being allowables.
Treathern Plant adols which allow John Interceptor being allowable. Potential for minor storage and jump staton infores at new pine. | 2 | | lissolved Oxygen
npects | Stellarius of in-strates DO by 3
regil + theiring critical flow parint | Continuous reduction of in-
surem DO of Zings! # | Continuous reduction of in-
calcium, DC of G - 2 regit
promities reduction of in-
stream IPO 2 - 4 regit during
critical countries | Intermittent reduction of in
all seen DO 2 mg8 + possible
during non-critical conditions.
reduction of DO 3 - 2 mg8 states
critical conditions. | Intermittent reduction of in
stream DO 0 - 2 mg/l pussible
g during non-critical contitions | Nis DO anglacts | intermillant improvement of
in-stream OC G - 2 mg/l | intermitent ingrovement is in extreme DO 2 mg/s - intermittent critical condition in processing to the condition of condi | Continuous improvement of a
all som DO 9 - 2 mg1
elemitlant critical condition
and treamain. 2-4 mg1 | Confinuous improvement of in-
streen (IO 2 ingl(+ | Continuous improvement of
ortical condition in atream DO
2 mg/l = | Plant efficient basis derivation will provide improvement of an attento DO 0 - 2 mg/L but stream may day up to summer. | a. | | lownstream
npects | 75%+ increase in arrical SOC at overent hade | 50 - 75°s increase in armsel
BDIS or nutrees hinds | 25 - 50% increase in annual
BOD or nutrient histor. | 10 - 25% increase in annual
BOD or nustant luads (CBO +
runoff) | Potential 0 - 10 % increase in
amount everage BIOD or
nutrent leads (CSO + runoff) | No impact on BDD or number
leads (CSD = runnif) | 0 - 10% reduction in annual
SOD or nutrient losits (CSI
+ runoff) | 1 10 - 2514 reduction in annual
BIOO or nutries loads (CSO
+ nunal) | 25 - 50% reduction in annual
BOD or nutrient loads (CBO +
runoff) | 50 - 75% reduction to atmost
800 or nutrient losess (CSO -
nunoff) | 75%- reduction in arrival
BOD or nutrient loads (CBO -
runoff) | Improved capture and treatment of SSCs will provide 6 - 10 fa reduction in annual SCCs or nutrient leads (SSC + nutriel) absence sent of Jefferson County | 1 | | tream Flow
npacts (Peak
lows) | 25% + increase to posit firms | 10% - 25% s'acreann às pesti.
Nome | Up to 10% excreme to punk
forms | Frequent increase in New during ortical conditions | Possible increase in everyge
flow, or minor increase in high
flow prests | No impact on pask flows. | Minor reduction in flows - n
algrificant peek reduction | o Minor reduction in peak
flows under some condition | Up to 10% reduction in journ | 10% - 25% reduction in peak
flows | 75%- reduction in peak flows | Flow peaks to be reduced due to diversion of plant efficient. | 3 | | treem Flow
npacts (DWF only) | 25% oscrans in few during critical conditions. | 10% - 25% decrease in few
during critical conditions | 0-10% permanent over same
in flow during cirtical
consistence | Frequent decrease in flow during critical conditions. | C Prossible decrease in sverage
Now | No impact on average or
base observibles | infermitiant increases in
arream flow - not timed to
critical conditions | Intermittent increase in stream flow - often improved ordinal conditions | 0 - 10% permanent increase in
stream flow during citical
zond/bons | n 15 - 25 % permanent increase
in atteam flow sharing critical
conditions | 25% permanent increase in
stream fine during critical
conditions. | Base for substantially reduced, but this restricts stream to its natural condition passible and negative repends believe such | 0 | | estructions: (1.) Scr
otal score for this a | ore each alternative for
elternative in this value. | each of the seven espo
(3.) Sheded eres repres | cts of the value. Score
ents "fatal flaw", Alten | es can be positive or neg
natives that score in this | stive, depending on the
area should not be pro- | e impact of the alterna
oposed. | tive on the value, (2.) | Total the scores for e | ich aspect to get the | | ta | | | | Aspect | Rationale | 7.77 | - | | | | Measurement I | Anthod | | 1 | Te | otal Score (Default) | 10 | | quatic and
erestrial Habitet
rotection | shape and characteristics | etc. Predictive models | uned to evaluate wat we | h changes in base flow, presther control measures to
nate future positive and ne | ove a limited ability to pre | ee cover, channel
edict biological diversity | and other water quality | v impacts. Flow models | nodels will address DO
will predict base flow
nges in erosion and wate | Note: The total score of calculated. | alculated may be more | than 25. In the instances where this might occur, a default ma | ximum score of 25 w | | esthetics - Solids
nd Floetables | advanced treatment optic | ns. Storm water retention | n, constructed wetlands | overnents in capture rates
and other control system
y, penalty points will be as | s may provide solids and | floatables removal as | Curreit solids and floatables removal efficiency has been estimated to all sites with control schoology. Improvements in removal efficiencies will be estimated for all asternatives that and sisterning or other elvipscool treatment technologies. Where treatment is proposed for storm water discharges removals will be estimated based on publisher removal data. | | | | | | | | esthetics - Odor
nd Air Emissions | Odors and air emissions
by both the intensity and
from sewage handling fac | he quality of the odor. D | age systems, pump stati
electable and annoying | ions, force mains, and lon
are two common descripts | g flat sewers. Odors are
ons of different intensities | generally characterized
and qualities of odors | Odor emissions from sewage handling facilities can be modeled for witerable, qualify, and geographic spread. For planning purposes this world or alwalands in and common, and will not be other sacepit in very trace circumstances. The potential for odor and air emissions will be actimated based on typical applications and model predictions for storage time, number of events, average flow velocities etc. | | | | | | | | Issolved Oxygen | Dissolved oxygen in stree | ma is dependent on a va | riety of factors including | BOD load, nutrient load, s | stream flow velocity, wate | er temperature, etc. | For BIGC the Water Quality Tool will be used to estimate the impacts of various bading conditions, flows, temperatures, etc. Probable impacts of individual projects will be estimated based on competitions to the various stream condition scenarios. | | | | | | | | ownstream
spects | Downstream impacts refe
been identified as the sou
to get to the Gulf, but can | rce of 30 - 45% of the tot | al nutrient loads reachin | County, Nutrient loadings
g the Gulf of Mexico, BOD | in the Ohio (not just Jeffe
) is not likely to persist in | erson County) have
the river long enough | Pollutant removals wif
average loads, since t
and cumulative. | be estimated based on
he downstream impacts | reductions in annual
are primarily long-term | | | | | | tream Flow
spects (Peak
ows) | | es as are often caused b | | rahed can erode the strea | mbed, damage aquatic a | nd terrestrial habitat, | sources, and the Wate | estimete flow peaking to
c Quality Tool has a hy-
during various storm ex | fraulic component to | | | | | |
tream Flow | Diversion of flows away fr
measures such as ground | om a stream due to aber
water pumping can incre | donment of a treatment | plant etc. can reduce base
oficial results. | e flows in a stream. Alter | matively, other control | Predictive models can
Water Quality Tool har
flows during various d | s a hydraulic componen | vidual sources, and the | | | | | | | oject #1 | | | | | | 5 | JI JI N | IB01A 03 | | | | | |---|---|--|--|--|--|---|--|--|--|---
--|--|---------------------------| | Value: | Environmental E | nhancement | | 7 | | | | | | - | | | | | Aspect | -5 | 4 | - | | | | Sc | oring | | | | | | | Aquatic and | Simprodon of robits for own or | -4
Dimension of appropriate | Shrengon of moor amount | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | Assumptions | Score Per Aspec | | erestrial Habitat
Protection | endangered species | smoont of common habitat | of common tratitat | Significant habital imparament. | Minor imparement to existing
hebital | No impact on habital | Minor enhancement of
scieting habitat | Significant enhancement of
exterior nutrition | Greation of mmor amount of
community habited | Creator of aignificent emount
of common habitat | Creation of critical habitet for
rare or endangered species. | | | | Aasthetics - Solids | 79% reduction in votation of | 50 - 75% of the with no SAF | 25 - 50% of Sour with no Sail | F 10 - 25% of time with no SAF | Reduces efficiency of weathy | 9 | 0 - 10% of decharged flow | 10 - 25 % of doctarged for | 25 - 50% of discharged flow | 50 - 75% of desthersed free | 79% • of discharged fine | | | | end Floatables | Now with no SSF papture | (mone) | CMETOWORK | removal | Reduces efficiency of weather
SSF control device, 0 - 10%
of flow with no SSF removal | No change in SAF removal | realed with positive S&F | rected with positive SAF
removal (sureers) | treated with positive SSF
(emoved (screens) | treated with positive SAF
removal acreens | recised with positive SAF
removal (Acresia) | | | | | | | | | | - N | | | DECKE STORY | | (Second Second S | | | | Austhetics - Odor | | Create enmount aday equips | Create auriores play source | | Contra description in the | | Elemente delectable ador | Eliminate delectable odor | Eliminate envoying odor amen | | Elimenate arrigaving oder | | | | and Air Emissions | Create enloying other source effecting > 20 customers often | Craeta annoying odor equica
effecting <20 customers other
or > 20 customers occasional | affecting ×20 continues
upperformativ | Create detectable ador source
effecting > 50 customers after | Create detectable ador
source effecting < 50 | file implaction odors | source affecting < 50 | surviva affecting > 50 | effecting <20 customers | Eliminate arranging odor source
affecting <20 customers often
or >20 customers occasionali; | Source affecting >20 | | | | | | | | | | | | | | S - 20 COMMING OCCUPANT | Comment of the | | | | | | | | | the state of the | | | - | | | | | | | | | | Continuous reduction of in- | Intermittent reduction of in | | | | | | | | | | | Dissolved Oxygen | Reduction of in chance IDO by 2 | Continuous reduction of in- | about Dilota - Impt | stream DO 2 mgl + possible | intermittent reduction of in | No DO impacts | Intermittent improvement of | intermittent improvement of
in-stream DO 2 mol * | Continuous improvement of a
attenue DO 0 - 2 mg/l | Contract more amount of m | Continuous improvement of | | | | Impacts | cogs + ourseg colocal flow period | + North Sto Old street Kal | protetie reduction of in-
street DC 2 - 4 mg/ ourns | during non-critical canditions
ing reduction of DG 0 - 2 mg4 dur | stream DIO 0 - 2 mg/l possitive
during som-critical crinditions | Ne DO impacts | h-steam DO 6 - 2 mgt | in-street DO 2 mg/ +,
interrettant critical condition
improvements 0 - 2 mg/ | intermittant critical condition
improvements 2-4 mg/l | streets DG 2 mg/l + | official condition in stream DO
2 right + | | | | | | | STIESE STATEMENTS | | THE RESERVE | | | | | The same of | | | | | ATTACAMENT OF THE PARTY | | | | | and the state of t | | | | Committee Commit | | | | | | Downstream
Impects | 79%+ increase in simulat BOD at outliers loate | 50 - 75% increese in annual.
BOO or nutrient loads | 25 - 50% increase in enrust
80D or nutrient toads | 10 - 25% increase in avrius
800 or nutrient heets (USO + | Polenški D - 10 % incresos ir
annual average 800 or | Les aidans as there is a series | BOD or nutrient linests (CD) | 0 800 or ruthern leads (CSC | 25 - 50% reduction in ennual
800 or nuclent trade (CSC) • | BOD or nutrient leads (CSO + | 75% reduction in annual
800 or nutrient loads (CSO - | | | | Stream Flow | | | | rund) | nutrient issets (CSO • nunoff) | | + runoff) | • navofi) | runoff) | rurioff) | runoff) | | | | Impacts (Peak | 25% - excresse in past flows | 10% - 25% moreau at peak.
Nows | Up to 10% increase in past | Frequent increase in fine during
critical conditions | Possible increase in everyge
flow or minor increase in high | No amport on peak forem | Minor reduction in tipes - n
significant past reduction | Minor reduction in peak
flows under some condition | Lip to 10% reduction in peak | 10% - 25% reduction in past | 25% reduction to peak flows. | | | | flows) | Section Figure College | | 91000000000000000000000000000000000000 | | New pastes | | -principal reaction | under some condition | - | | | | | | | | | 0.10% narranged decrease | | | | | | | | | | | | Stream Flow
Impacts (DWF only) | 25% decrease in few during
critical conditions. | 10% - 25% decrease in flow
during critical conditions | in few during critical conditions | Frequent decrease in flow during
striked conditions | Possible decrease in average
form | No impact on average or
trate observings | Intermittent increase in
atreum flow - not timed to
critical conditions. | intermittent increese in
streets flow - often improves
critical conditions | 5 - 10% permanent incresso i
atream flow during critical | in 57 earn fire during critical | 25%- partialised necessa in
streets few during critical | | | | | | | and a second | | | | Disca Cordios | CHES CINCIONS | Conditions | conditions | conditions | | | | | | 0.24 | 2 152 3 22 | | 7.1 | | | | | | | | T | | otal score for this al | ore each alternative for e
alternative in this value. (| 3.) Shaded area repres | cts of the value, Score
onts "fatal flaw", Alten | es can be positive or neg-
natives that score in this | tive, depending on the
area should not be pro | e impact of the alterni
oposed. | stive on the value. (2.) | Total the scores for e | sch aspect to get the | 7.1 | Total F | law Score Calculated | 4 | | | | S. C. IMARIAGO, CHIP CO MOST | SAMESCON CONTRACTOR | Scotle-Schliebone Historic | THE PERSON OF THE POST | No. | | | | | | | | | Aspect | Rationale | | | | | | Measurement I | Method | | | C | corrected Score | 4 | | | | | | | | | | | | | | | | | Aquetic and | Wet weather projects may | affect both equatic and | terrestrial habital throug | th changes in base flow, pe | ak flow, water quality, tr | ee cover channel | and configuration, tre- | specifically address chi
cover etc. Predictive | models will address DO | La contract | | | | | Protection | shape and characteristics
changes, erosion impacts | etc. Predictive models | used to evaluate wet we
as must be used to estin | on changes in base now, pe
eather control measures he
nate future positive and neg | ve a limited ability to pre-
selve impacts. | dict biological diversity | and other water qualit
and peak flow rates to | y impacts. Flow models
allow estimates of cha | will predict base flow | Note: The total score of
defoulated. | alculated may be more th | nan 25. In the instances where this might occur, a default m | aximum score of 25 will t | | Totalcalon | | | | | | | surface area. | and the same of the | ingrae in Gregoria and Hario | 9 | Comment wollde and So | | cy has been estimated to | | | | | | Austhetics - Solids | Most CSOs have some for | rm of solids and floatable | es control baffles. Impre | overnents in capture rates of | on be expected with scr | eening or other | all sites
with control to | schoology, Improvemen | ts in removal efficiencies | | | | | | and Floatables | advenced treatment option | ns. Storm water retention | n, constructed wetlands | , and other control systems
y, penalty points will be ass | may provide solids and | finatables removal as | edvanced treatment to | alternatives that add s
schnologies. Where tre | stment is proposed for | THE PERSON NAMED IN | | | | | | NASS STATE OF THE PARTY | | | representation of the second | and a man parame | manany assessment. | storm water discharge
removal data. | es removals will be esti- | nated based on published | Odor emissions from | sewage handling facilitie | s can be modeled for | | | | | | | Odors and air emissions | can be generated in store | age systems, pump stati | ions, force mains, and long | flat sowers. Odors are | generally characterized | intensity, quality, and
level of evaluation is n | geographic spread. For
at common, and will not | plenning purposes this | | | | | | nd Air Emissions | from sewage handling fac | ities. | etectable and annoying | are two common descripto | s of different intensities | and qualities of odors | rare circumstances. | The potential for odor an
pical applications and n | d air emissions will be | DOM: | | | | | | | | | | | | storage time, number | pical applications and re
of events, average flow | velocities etc. | 2.725.000 | | | | | | | For BGC the Water Q | unity Tool will be used t | o estimate the impacts | | | | | | npacts | Dissalved oxygen in strea | ms is dependent on a va | riety of factors including | BOD load, nutrient load, st | ream flow velocity, water | r temperature, etc. | of various loading con
impacts of individual p | ditions, flows, temperati
rojects will be estimated | res, etc. Probable
based on comparisons | | | | | | | | | | | | | to the various stream | | | V-915-00 | | | | | | | | | | | | | | | 1000 | | | | | lownstream | Downstream impacts refer | to conditions in the Ohio | River below Jefferson | County: Nutrient loadings is | the Ohia (not just Jeffe | rson County) have | | be estimated based on | | | | | | | b. | been identified as the sour
to get to the Gulf, but can | ce of 30 - 45% of the total | al nutrient loads reaching | g the Gulf of Mexico. BOD | is not likely to pensist in | the river long enough | average loads, since to
and cumulative. | he downstream impacts | are primarily long-term | | | | | | | | | | | | | - Cumulative | | | 4.4 | | | | | 100 | | | | 1 | | | 202 00 - | | | | | | | | | Extremently high peak flow
make water based recreat | es as are often caused b | y urbanization of a water | rshed can erode the stream | ibed, damage aquetic a | nd terrestrial habitet, | Predictive models can
sources, and the Water | estimate flow peaking for Quality Tool has a hyd | actors from individual
fraulic component to | | | | | | ows) | make water based recreat | on unsare or impractical | | | | | estimate stream flows | during various storm ev | ents. | tream Flow D | Diversion of flows every for | om a stream due to at a | donument of a treatment | plant etc. can reduce base | Sans beautiers of | and and | Predictive models can | estimate flows from ind | vidual sources, and the | | | | | | npacts (DWF only) | measures such as ground | water pumping can incre | ase base flows with ben | eficial results. | n a stream. Aller | marrery, other control | Water Quality Tool has
flows during various di | a hydraulic componen | to estimate stream | | | | | | | | | | | | | | , weather events. | cronyms
GC - Beargrass Creek | | | DO - Dissolved oxygen | | S&F - Solids and floatab | 100 m | | | | | | | | | Malura | , | | | | errerson | town Ble | naing El | ilminatio | n Evaluat | ion - Alte | ernative | 3 | | |--|--|---|---
--|--|--|---|---|--
---|---|---|------------------| | Value: | Eco-Friendl | y Solutions | | | | | | | | | | | | | Aspect | -5 | 4 | -3 | -2 | 1 4 | 1 0 | I 1 | coring | 1 3 | 4 | | | | | Non-Renewable
Energy
Consumption | Primary energy
consumption is greate
than secondary
treatment | Primary energy
consumption equal to 75 -
100% of secondary
treatment | Primary energy
consumption equal to 30 -
75% of secondary
treatment | Primary energy
consumption equal to 15
30% of secondary
treatment | Primary energy consumption
equal to 0 - 15% of
secondary treatment | tio energy consumption
except for cleaning and
maintenance | Cleaning and maintenance
not needed, no primary
consumption | NA . | NA . | NA . | NA S | Assumptions Energy consumption needed for storage and pump station at the plant. 50% of flow pumped, secondary treatment still required and of pipe. | Score Per Aspect | | Use of Natural
Systems | Constructed tacilities
pertnerently displace
5+ acres wetlends or
50% locally available
green space | Constructed facilities
permanently displace 3 - 5
acres wetlands or 25 - 50%
locally sveilable green
space | Constructed facilities
permanently displace 1 - 3
acres wetlands or 10 - 15*
locally available green
space | Constructed facilities
permanently displace 0 -
N acre welfands or up to
10% locally available
green space | Constructed facilities
lemporarily disrupt welfands
or green space | Alternative does not use or
affect natural systems,
wellands, or green space | Alternative doesn not use
natural systems, but
enhances green space or
walland | Natural systems play a mine
role in alternative function,
up to 1 acre wetland or 10%
additional green space
created | Natural systems are
significant part of alternative
function, 1 - 3 acres of
welfund created or 10 - 25%
additional green space | Alternative fully uses natural systems, 3 - 5 ecres of wetland created or 25-50% additional green space. | Alternative results in multi-
use natural system
development, 5+ acres of
wetland or 50% additional
green space | Construction would temporarily disrupt green space, but potentially allow new green space | 3 | | Multiple-Use
Facillies | Constructed facilities
permanently eliminate
recreational
apportunity | Constructed facilities
significantly impare
recreational opportunity | Constructed facilities
nuclerately impare
recreational opportunity | Constructed facilities have
minor impacts on
recreational opportunity | Construction temporarily impacts recreational opportunity | No impacts on recreational opportunities | Alternative improves access to existing recreational areas | Alternative has limited positive impact on recreation | Alternative significantly enhances recreational opportunities | Alternative increases recreational opportunities in area | Alternative results in multi-
use facility | Portion of plant site could be converted to multi-
use recreation when treatment process is
decommissioned. | 2 | | Source Control
of subwatershed
pollutant loads | increased by 50% | Poliutant loadings are
increased by 30 - 50% | Polistant leadings are
increased by 10 - 30% | End of pipe pollutant
loadings are increased by
0 - 10% | End of pipe pollutant
loadings impacts are
inconsistent, but likely highe | End of pipe pollutant loading
are unchanged | Diversion transfers more
than 25% of pollutant
loadings to less sensitive
receiving water | Diversion transfers more
than 50% of pollutant
loadings to less sensitive
receiving water | Oliversion transfers more
than 75% of pollutant
loadings to less sensitive
receiving water | Diversion transfers more
than 90% of pollutant
loadings to less sensitive
receiving water | Diversion transfers more
than 100% of pollutant
loadings to less sensitive
receiving water | 59% of pollutant loads transferred to Ohio
River, a less sensilve watershed. | 2 | | Non-Obtrusive
Construction
Techniques | Permanent kas of
green space or
secutive area
disruption | Mein thoroughfare
closures, sensitive area
temporary disruptions | Widespread dust and
noise, biasting, secondary
street closures | Localized dust, noise and local street closures | Minor dust and noise, traffic
lane clasures | No construction impacts | NA | NA | NA | NA | NA | Construction would cause localized dust and noise with street clasures | -2 | | Consistent Land
Use | Introdive or nuisance
facilities inconsistent
with neighborhood or
lend use. | Facilities inconsistent with
neighborhood or land use. | Pacility characteristics
mitigated to reduce impact
on neighborhood | Facilies have significant
impact on development
density or land use | Facility has minor impact on
development density or land
use | No impact on lend use or no
above ground facilities | Alternative mitigates
existing competibility
problem | Alternative removes facility inconsistent with
neighborhood | Alternative removes
nuisance facility from
neighborhood | Alternative enhances
property values in
neighborhood | Alternative provides
enhancements that
significantly improve
neighborhood | Fectibles on plant site will be reduced to a
pump station and storage facility, oliminating the
existing incompetable use of a treatment
facility. | 2 | | Impermeable
Surfaces | S acres + of
impermeable surfaces
are added | 3 - 5 acres of impermeable
surfaces are added | 1 - 3 acres of impermeable
surfaces are added | up to 1 acre of
impermeable surfaces are
added | Minor increase in
impermeable surfaces
added | No change in impermeable surface | Minor reduction in
impermeable surfaces | Up to 1 acre of impermeable surfaces removed | 1 - 3 acres of impermeable surfaces removed | 3 - 5 acres of impermeable
surfaces removed | More than 5 acres of
impermeable surfaces
removed | No charge in impermeable surface in all options | 0 | | LEEDS
Performance | NA | NA | NA | NA | NA. | LEEDS not applicable or
LEEDS acore <10 | LEEDS Score 10 - 25 | LEEDS Centred | LEEDS Silver | LEEDS GOM | LEEDS Platinum | LEEDS not applicable or LEEDS score < 10 | 0 | | | | | | | | | | | | | | | | | nstructions: (1.)
to get the total sc | Score each alternat
ore for this alternat | ive for each of the eightive in this value. (3.) S | nt aspects of the value
haded area represent | s. Scores can be posi
s "fatal flaw". Alterna | tive or negative, depend
tives that score in this | ding on the impact of th
area should not be prop | e alternative on the va | due. (2.) Total the score | s for each aspect | | Total Raw Score | Calculated | 3 | | Aspect | Score each alternat
ore for this alternat
Rationale | ive for each of the eight
lve in this value. (3.) S | nt aspects of the value
haded area represent | s. Scores can be posi
s "fatal flaw". Alterna | tive or negative, depend
tives that score in this | ding on the impact of th
area should not be prop | e alternative on the va | | s for each aspect | | Total Raw Score (| | 3 | | o get the total sc | Rationale | ive in this value. (3.) S | haded area represent | s "fatal flaw". Alterna | tives that score in this | area should not be prop | Measurement N | Method gy consumed per MG of flow to | | Note: The total score
maximum score of 25 v | Total Score (E | | | | Aspect Von-Renewable | Rationale Eco-friendly adultions w provides penalty points
Natural systems respiece | ive in this value. (3.) S
rould be espected to be low of
for high energy consuming a | haded area represent onsumers of non-renewable Bernatives. | s "fatal flaw". Alterna e energy Benchmarking ene e layours, constructed biose | tives that score in this | area should not be prop | Measurement N Evaluation of primary energy energy consumed at the W Acres of wellands and other | Method gy consumed per MG of flow to | nated, compared to the | Note: The total score of 25 v | Total Score (E | Defaultj | | | Aspect Aspect Von-Renewable Energy Consumption Use of Natural | Rationale Eco-friendly adultions a provides penalty points Natural systems replact various kinds. Options Eco-friendly adultions of | Ive in this value, (3.) S could be aspected to be low or for high energy consuming a concrete and steel construct that reduce wetlands and gre | onsurvers of non-renewable
learnetives. Tion with wet bottom storage
en space get penalty points
es har both water-based and | s "fatal flaw". Alterna e energy, Benchmerking ene e lagoons, constructed bioer. | tives that score in this repy consumption against con- reses, rain gardens etc. that is cancing, keyeking, fishing, | area should not be prop | Measurement N Evaluation of primary energy energy consumed at the W Acres of wellands and othe subjective evaluation of the Subjective evaluation of ch | Method gy consumed per MG of flow to CWTP per MG treated. rr types of green space created "basis" of the alternative - "green ange prediction in the quality is, increased bean flow or decre | rested, compared to the or eliminated. Also includes ent or fact fa | Note: The total score
maximum score of 25 to | Total Score (E | Defaultj | | | Aspect Aspect Von-Renewable Energy Consumption Jise of Natural Systems Auttiple-Use | Rationale Eco-tendly authliene approvides penetly periodic pene | Ive in this value, (3.) S ovid he aspected to be low or for high energy consuming a a concrete and steel construct that reduce wetlands and gre reste recreational opportunite reste recreation. Bird watching, hill ds at the source through beh ds at the source through beh | phaded area represent onsureers of non-renewable Renedives. Ston with wet bottom storage een spince get penalty points is for both water-based and ng, biking, picnicing, campin | s "fatal flaw". Alterna
s energy. Benchmarking ene
is lagoons, constructed bios-
riparien recreation. Bostling
ing sto, would be considered | tives that score in this repy consumption against con- reses, rain gardens etc. that is cancing, keyeking, fishing, | area should not be prop ventional secondary treatment norsess green space of wedge, swimming etc. would | Measurement N Evaluation of primary energy energy consumed at the W Acres of wellands and othe subjective evaluation of the Subjective evaluation of cha- result of batter water qualify time cover or vegitated rises Modeled land-side politificat | Method gy consumed per MG of flow to CWTP per MG treated. rr types of green space created "basis" of the alternative - "green ange prediction in the quality is, increased bean flow or decre | rested, compared to the or eliminated. Also includes sen' or "grey". The or rigation environment as a send flow peaks, increased left by the SGC Water Qualif. | Note: The total score of 25 of maximum score of 25 | Total Score (E | Defaultj | | | Aspect | Rationale Eco-triently solutions aprovides penalty points Natural systems replace various kinds. Options Eco-triently solutions or bar direct wastern kinds. Options Controlling pollution to avoiding and of pipe ten | Ive in this value, (3.) S rould be especied to be love for high energy consuming a coincrete and steel construct that reduce wetlands and gire reste recreational opportunities rester recreation. Bird watching, fall dis at the source through beh- streent requirements | consumers of non-renewable
beneditives. It is not storage of penalty points
as her toolt water-based and
rig, tiking, picnicing, campil
evior modification, product a
evior modification, product a | s "fatal flaw". Alterna e energy. Benchmarking en e lagoons, constructed biose. riparien recreation. Bosting getc. would be considered epiacements or stormwater. | tives that score in this regy consumption against com vestes, rain gardens etc. that in cancing, keyeking, fishing, related riperian recreation. | area should not be prop ventional secondary treatment se | Measurement N Evaluation of primary energy energy consumed at the W Acres of wellands and othe subjective evaluation of the Subjective evaluation of the result of batter water qualify free cover or vegitated rises Modeled land-side politificat Tool or by comparision to the | Method by consumed per MG of flow by COWTP per MG treated. Trypes of green apace created by the stemative - Tyre anges predicted in the aquelic, it is considered to the stemative - Tyre anges predicted in the aquelic for an areas etc. Soding reductions as calculated to the stematic values or plot program behalve construction impacts his | rested, compared to the or eliminated. Also includes sen' or "geey". The or right of the send flow peaks, increased send flow peaks, increased send flow peaks, increased send flow peaks, increased send flow the SGC Water Quality measurements. | Note: The total score
maximum score of 25 to | Total Score (E | Defaultj | | | Aspect | Rationale Econtendly solutions aprovides penalty points Natural systems replact various knots. Options Eco-triently solutions of the discussion di | ive in this value, (3.) S rould be espected to be low or for high energy consuming a coincrete and sheet constitute that reduce wetlands and girs reads recreational opportunities resease recreational opportunities resease recreation. Bird watching, hiki- dis at the source through behinder requirements repacts on braffic, noise and it can either enhance or detain | innsumers of non-renewable
harmetives. Tion with wet bottom storage
an space get penalty point
as his both water-based and
rig, biking, picnicing, campit
evior modification, product is
ust are all measures of the to
the product of
the surrounding prog- | s "fatal flaw". Alterna e energy. Benchmarking on e lagoons, constructed biose. riparien recreation. Boating splic, would be considered aplacements or stormwater triendliness of an alternative. | rityes that score in this rity consumption against con- reside, rain gardens etc. that is canoing, keyeking, fishing, railated reprises recreation. canoing keyeking fishing training the capture of t | area should not be prop ventional secondary treatment crease green space of wedge, swimming etc. would use publicants thereby maky points for creating | Measurement N Evaluation of primary energy energy consumed at the W Acres of welfarchs and other subjective evaluation of the Modeled land-side politization Tool or by comparation to its Subjective evaluation of pro- construction envisioned for construction envisioned for At the planning level, proper | Method by consumed per MG of flow by COWTP per MG treated. Trypes of green apace created by the stemative - Tyre anges predicted in the aquelic, it is considered to the stemative - Tyre anges predicted in the aquelic for an areas etc. Soding reductions as calculated to the stematic values or plot program behalve construction impacts his | insted, compared to the or eliminated. Also includes ent or "gey". or rigarian environment as a seased flow peaks, increased right by the BGC Walser Quality measurements. and on the type of steller impacts on the end, enhancements are | Note: The total score maximum score of 25 v | Total Score (E | Defaultj | | | Aspect As | Rationale Eco-triendly solutions up- provides penalty points Natural systems replace various kinds. Options Eco-triendly solutions of the desired water- based in Controlling pollution to a reading and of pipe ten Probable construction is multisines conditions. Alternative configuration uply. The same pump a hadden from view by ten Adding impermeable su Adding impermeable su | Ive in this value, (3.) S rould be expected to be low of for high energy consuming a coincrete and steel constitute that reduce wetlands and gra- reate recreational apportunite resets recreation. Bird watching, hill dis at the source through behintment requirements repects on traffic, noise and all can either enhance or detra- | consumers of non-renewable benedities. The matter of non-renewable benedities of non-renewable benedities, and the storage of penalty points are set took water-based and rig. biking, penalty, compile witer modification, product a vivial measures of the surrounding programmes or other green space areastence that the right in another or other green space | e energy. Benchmarking one energy. Benchmarking one lagoons, constructed biose. riparien recreation. Bosting agric, would be considered applications of an alternative. Triendliness of an alternative with the neighborhood. If a solded to enhance the neigh send the bidel transport of s. and trans | rives that score in this ripy consumption apainst con- related, rain gardens etc. that is canoing, keyeking, fishing, related ripertan recreation, related ripertan recreation, management BMPs that caph Construction impacts get pe resty unfriendly pump station are larger perceif of land is evaluation- thornood. | area should not be prop ventional secondary treatment noreass green space of wedge, swimming etc. would use postulants thereby smally points for creating can be noisy, smally, and sie, a pump station can be | Measurement N Evaluation of primary energy energy consumed at the W Acres of veitlends and other subjective evaluation of the Subjective evaluation of pro- construction envisioned for At the planning level, proper surrounding properties. The surrounding properties. | Method y consumed per MG of flow to CWTP per MG treated. If types of given space
created "basis" of the atternative - "gri singes predicted in the aquatic time along resolutions are calculate to statistic vashess or pilot program bable constitucion impacts ha the atternative. It cash to defend to evoid neg- pending in the cash of the considered to cash to defend to evoid neg- pending in the westelling of a trapes project definition and bursages project definition and bursages | insted, compared to the or eliminated. Also includes ent or "gey". or rigarian environment as a seased flow peaks, increased right by the BGC Walser Quality measurements. and on the type of steller impacts on the end, enhancements are | Note: The total score maximum score of 25 to 10 | Total Score (E | Defaultj | | | Project #1 | | | | | | | 2 1 1 1 | T_NB01 | 4_03_C | | | | | |--|--|--|--|--
--|--|---|---|---|--|---|---|-----------------| | Value: | Eco-Friendl | y Solutions | | | | | | | | | | | | | Aspect | - 5 | -4 | -3 | -2 | -1 | 1 0 | So | coring | 3 | 4 | 5 | Assumptions | Score Per Aspec | | Non-Renewable
Energy
Consumption | Primary energy
consumption is greate
then secondary
treatment | Primary energy
consumption equal to 75 -
100% of secondary
treatment | Primery energy
consumption equal to 30 -
75% at secondary
treatment | Primary energy
concumption equal to 15
30% of secondary
treatment | Primary energy consumption
equal to 0 - 15% of
secondary beatment | No energy consumption
except for cleaning and
meintenance | Cleaning and maintenance
not needed, no primary
consumption | NA | NA . | NA | NA. | Energy consumption due to increase in pumping | -1 | | Use of Natural
Systems | Constructed facilities
permanently displace
5+ acras wellends or
50% locally available
green space | | Constructed facilities
permanently displace 1 - 3
acres wellands to 10 - 151
locally evallable green
space | | Constructed facilities
temporarily disrupt wetlands
or green space | Alternative does not use or affect natural systems, wellends, or green space | Attention doesn not use
neturel systems, but
enhances green space or
wellend | Natural systems play a minorole in attenuative function,
up to 1 acre wellend or 10%
additional green space
created | significant part of alternative | systems, 3 - 5 acres of | Atternative results in multi-
use natural system
development, 5+ acres of
wedland or 50% additional
green space | Force Main construction temporarily disrupts green space | -1 | | Multiple-Use
Facilities | Constructed facilities
permanently eliminate
recreational
opportunity | Constructed facilities
significantly impare
recreational opportunity | Constructed facilities moderately impera recreational opportunity | Constructed facilities have minor impacts on recreational opportunity | Construction temporarily
impacts recreational
opportunity | No impacts on recreational opportunities | Alternative improves access to existing recreational areas | Alternative has limited positive impact on recreation | Alternative significantly enhances recreational opportunities | Alternative increases recreational opportunities in area | Alternative results in multi-
use facility | No impact | 0 | | Source Control
of subwatershed
pollutant loads | Poliutant loadings are
increased by 50% | Poliutent loadings are
increased by 30 - 50% | Polistant leadings are increased by 10 - 30% | End of pipe pollutent
loadings are increased by
0 - 10% | End of pipe pollutant
loadings impacts are
inconsistent, but likely highe | End of pipe pollutant loading
are unchanged | Pollutent loadings impects
are inconsistent, but likely
lower | Source control reduces
pollutant loadings by 0 - 10% | Source control reduces pollutant loadings by 10 - 30% | Source control reduces poliutant loadings by 30 - 50% | Source control reduces pollutant loadings by more than 50% | End of pipe poliutant loadings impacts are inconsistent, but likely higher in all options | -1 | | Non-Obtrusive
Construction
Techniques | Permanent loss of green space or sensitive area disruption | Main thoroughfare
closures, sensitive area
temporary disruptions | Widespreed dust and
noise, blasting, secondary
street closures | Localized dust, noise and local street closures | Minor dust and noise, treffic
lene closures | No construction impacts | NA | NA | NA | NA | NA . | Force mein construction would result in minor dust and lane closures | -1 | | Consistent Land
Use | Intrusive or missence
facilities inconsistent
with neighborhood or
land use. | Facilities inconsistent with
neighborhood or land use. | Facility characteristics
mitigated to reduce impact
on neighborhood | Facilies have significent
impact on development
density or land use | Facility has minor impact on
development density or land
use | No impact on land use or no
above ground facilities | Alternative mitigates existing compatibility problem | Alternative removes facility inconsistant with
neighborhood | Alternative removes
numerice facility from
neighborhood | Atternative enhances
property values in
neighborhood | Alternative provides
enhancements that
significantly improve
neighborhood | No impact on land use or above ground facilities in all options | 0 | | Impermeable
Surfaces | 5 acres+ of
impermeable surfaces
are added | 3 - 5 acres of impermeeble
surfaces are added | 1 - 3 acres of impermeable
surfaces are added | up to 1 acre of impermeable surfaces an added | Minor increase in
Impermeable surfaces
added | No change in impermeable surface | Minor reduction in
impermeable surfaces | Up to 1 acre of impermeable surfaces removed | 1 - 3 acres of impermeable
surfaces removed | 3 - 5 acres of impermeable
surfaces removed | More than 5 acres of
impermeable surfaces
comoved | No change in impermeable surface in all options | 0 | | LEEDS | NA | NA | NA | NA | NA | LEEDS not applicable or
LEEDS score <10 | LEEDS Scare 10 - 25 | LEEDS Certified | LEEDS Silver | LEEDS GOA | LEEDS Platinum | LEEDS not applicable or LEEDS score < 10 in all options | 0 | | Performance | 77.55 | | | | | | | | | | | | | | Performance
instructions: (1.) | | | | | Itive or negative, depend
trives that score in this | | | lue. (2.) Total the score | s for each aspect | | Total Raw Score | Calculated | 4 | | Performance instructions: (1.) to get the total so Aspect | | | | | | | | | s for each aspect | | Total Raw Score of | | 4 | | Performance
instructions: (1.)
to get the total so | Rationale | tive in this value. (3.) S | Shaded area represent | s "fatal flaw". Alterna | | area should not be prop | Measurement N | Method yy sonsumed per MG of flow In | | Note: The total score maximum score of 25 | Corrected S | | 4 | | Performance instructions: (1.) to get the total sc Aspect Non-Renewable Energy | Rationale Eco-friendly solutions a provides penalty points Natural systems replace | tive in this value, (3.) S vould be expected to be low for high energy consuming of | Shaded area represent
consumers of non-renewable
alternatives. | s "fatal flaw", Alterna
e energy, Benchmerking en
e legoons, constructed bios | atives that score in this | area should not be progressional secondary treatment | Measurement N Evaluation of primary energy energy consumed at the W Acres of wetlands and other | Method yy sonsumed per MG of flow In | eated, compared to the | | Corrected S | Icore | 4 | | Performance instructions: (1.) to get the total sc Aspect Non-Renewable Energy Consumption | Rationale Eco-friendly solutions a growides penalty points Natural systems replact various kinds. Options Eco-friendly solutions of | ecould be expected to be low to four high energy consuming or concurring or their reduce wednesds and gift reduce wednesds and gift restore recreational opportunity restor recreational opportunity. | Shaded area represent
consumers of non-renewable
alternatives. | s "fatal flaw". Alterna
e energy, Senchmerking en
e legoons, constructed hios
s. | arry consumption against con- welles, rain gardens etc. thet is | area a hould not be prop
verificial secondary treatment
increase green space of | Measurement N Evaluation of primary energy energy consumed at the W Acres of wetlands and ofthe subjective evaluation of the Subjective evaluation of chi | Aethod y consumed per MG of flow in CWTP per MG treated. It types of green space creation "basis" of the alternative - 'you mayou predicted in the equation, in creased base flow or decre | ested, compared to the or eliminated. Also includes sent or 'gray'. | | Corrected S | Icore | 4 | | Instructions: (1.) to get the total sc Aspect Non-Renewable Energy Consumption Use of Natural Systems Multiple-Use | Rationale Eco-liveridy solutions aprovides penalty politics aprovides penalty politics warrout kinds. Options various kinds. Options Eco-liveridy solutions to be direct water-based r | tive in this value, (3.) S rould be expected to be low for high energy consuming a e concrete and sleet construit that reduce wetlands and gri rester recreational opportunities or experiments of the second opportunities of distributions | Shaded area represent
inconsumers of non-renewable
alternatives. Incline with wet bottom along
seen space get penalty poets
seen space get penalty poets
seen for both water-based and
long, bilking, picnicing, campa | s "fatal flaw". Alterna
e energy, Benchmarking en
le lagoons, constructed hios
 | arry consumption against con- welles, rain gardens etc. thet is | area a hould not be prop
verificial secondary treatment
nonease green space of
wading, swimming etc. would | Measurement N Evaluation of primary energy energy consumed at the Vi Acres of vertilends and othe subjective evaluation of the Subjective evaluation of the subjective evaluation of the subjective evaluation of the Modeled land-side polifulari | Aethod y consumed per MG of flow in CWTP per MG treated. It types of green space creation "basis" of the alternative - 'you mayou predicted in the equation, in creased base flow or decre | asted, compared to the or eliminated. Also includes ent' or 'gray'. or 'quartan environment as a exact flow peaks, increased | | Corrected S | Icore | 4 | | Instructions: (1.) to get the total sc ASPECT ASPECT Non-Renewable Energy Consumption Use of Natural systems Multiple-Use acitiles Source Control of subwalershed | Rationale Eco-friendly solutions provides penalty solutions provides penalty solutions aprovides penalty solutions replace various kinds. Options Eco-friendly solutions of | tive in this value, (3.) S rould be expected to be low for high energy consuming a e concrete and steel construit of the reduce wedlends and gri reside recreational opportunities or a secretary in the reduce wedlends and gri reside recreation. Bird watching, his dis at the source through between the requirements. | Shaded area represent
consumers of non-renewable
alternatives. cition with well bottom storage
een space get penalty point
idea for both water-based and
idea, bilking, picnicing, campa
havior modification, product r | s "fatal flaw". Alterna
a energy, Benchmerking en
legoons, constructed hios
triparian recreation. Boating
riparian recreation. Boating
and the considered | arryy consumption against con-
wales, rain parders etc. thet is
wales, rain parders etc. thet is
g, canoing, kayeking, fishing,
related riperien recreation. | area a hould not be properly treatment of the th | Measurement N Evaluation of primary energy energy consumed at the Vi Acres of vertiands and other subjective evaluation of the Subjective evaluation of the result of better water quality tree cover or vegitated ripsa Modeled land-side politylard Tool or by somparisken to it | Aethod yr consumed per MG of flow in CWITP per MG treated. It pipes of green space creates "basis" of the atternative - 'yn anges predicted in the aquatic in a rese etc. I loading reductions as calculate areature values or pilot program basis construction impacts be | asted, compared to the
tor eliminated. Also includes
tent" or "grey".
or riparities environment as a
sased flow peaks, increased
the by the BGC Water Quality
in measurements. | | Corrected S | Icore | 4 | | Instructions: (1.) to get the total so Aspect Non-Renewable Energy Consumption Use of Natural Systems Multiple-Use acities Source Control of subwalershed collutant loads Non-Obtrasive Construction | Rationale Eco-finently solutions arrowister penalty points Natural systems replace various bonds. Options Eco-friently solutions are for the first options Eco-friently solutions to be freed water-based or be freed water-based or confidence on the first options. Options Probable construction in missance constitutions on the first options of options of the first options of the first options options options of the first options | would be expected to be low
four high energy consuming a
e concrete and steel constru-
tible reduce wellends and gir-
reads recreational opportunit
acceptation. Bird watching, his
did at the source through beil
at through
the source
through
the
source
through
the
through
the
through
through
through
through
through
the
through
through
through
through
through
through
through
through
through
through
through
through
through
through
through
through
through
through
through
through
through
through
through
through
through | consumers of non-renewable abtenuatives of non-renewable abtenuatives. Colon with well bottom above een a pence get penually posedure, picture in post post post post post post post post | s "fatal flaw". Alterns e energy, Benchmarking an e lagoons, constructed hios riparian recreation, Boating g etc. would be considered replacements or atormwater triandliness of an attenutive with the neighborhood. If a | arryy consumption against con- arryy consumption against con- meies, rain pardens etc. that is y, canoleg, kayaking, fishing, related riperian recreation, management BMPs that capt to construction impacts get per metely unfriendly pump station largers percet of land is available. | area a hould not be properly westigned secondary treatment receives green space of westing, swimming etc. would use poliviants thereby make points for creating can be noisy, amaly, and | Measurement N Evaluation of primary energy energy consumed at the W Acres of verticates and of the subjective evaluation of the subjective evaluation of the result of better water quality tree cover or vegitated rips Modeled land-side politutant Tool of by comparition to its Subjective evaluation of pro- construction envision for pro- construction envision error At the planning tree, projects. De | Aethod yr consumed per MG of flow in CWITP per MG treated. It pipes of green space creates "basis" of the atternative - 'yn anges predicted in the aquatic in a rese etc. I loading reductions as calculate areature values or pilot program basis construction impacts be | asted, compared to the or eliminated. Also includes the "grey". or riparitin envisorment as a teased flow peaks, increased tool by the BGC Water Quality treasurements. sed on the type of affive impacts on the ord, enhancements are | | Corrected S | Icore | 4 | | Instructions: (1.) to get the total so Aspect Non-Renewable Energy Consumption Use of Netural Systems Multiple-Use acitiles Source Control of subwatershed collutant loads Non-Obtrasive Construction achiques Consistent Land | Rationale Eco-friendly solutions aprovides penalty points arrowment replication of the control construction of the control con | rould be expected to be low
for high energy consursing a
concrete and steel constru
that reduce wellands and go
reate recreational opportunits
ecreation. But wetching, his
dis at the source through be-
stream requirements. | consumers of non-renewable ablamatives of non-renewable ablamatives. Colon with well bottom above een apsec get penalty posted on the posted and long, bitking, picriting, cample posted on the posted and the posted of the posted of the posted on the posted of the posted on the posted of the posted on the posted of the posted of the posted on the posted of poste | e energy. Benchmarking and energy. Benchmarking and elegoons, constructed bloss in the second | arryy consumption against con- erryy consumption against con- erryy consumption against con- erryy consumption against con- erry er | area a hould not be propertional secondary treatment receive green space of warding, swimming etc. would use poliutants thereby maily points for creating can be noisy, smally, and ble, a pump station can be | Measurement N Evaluation of primary energy energy consumed at the Wo Acres of vertiends and other subjective evaluation of the subjective evaluation of pro- construction envisioned for All the planning level, project surrounding properties. De | Method Wy consumed per MG of flow in CWTP per MG treated. If types of green space created "basis" of the attendere. "you ange predicted in the equality. In creased base flow or docs ian areas etc. I loading reductions as cuivale interest as a | asted, compared to the or eliminated. Also includes the "grey". or riparitin envisorment as a teased flow peaks, increased tool by the BGC Water Quality treasurements. sed on the type of affive impacts on the ord, enhancements are | | Corrected S | Icore | 4 |